
© 2018 SEC Consult | All rights reserved

©
 f
o

to
li
a

4
1

7
0

6
5

3
0

Finding security vulnerabilities

with modern fuzzing techniques

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• René Freingruber (r.freingruber@sec-consult.com)

• Twitter: @ReneFreingruber

• BSc @ TU Vienna, Currently MSc @ Technikum Vienna

• Senior Security Consultant at SEC Consult

• Red Team, Reverse Engineering, Exploit development, Fuzzing

• Trainer: Secure C/C++, Reverse Engineering and Red Teaming

• Previous talks:

• 2014: Bypassing EMET

• 31C3, DeepSec, ZeroNights, RuxCon, ToorCon and NorthSec

• 2015: Bypassing Application Whitelisting

• CanSecWest, DeepSec, Hacktivity, NorthSec, IT-SeCX, BSides Vienna and QuBit

• 2016: Hacking companies via firewalls

• DeepSec, BSides Vienna, DSS ITSEC and IT-SeCX (lightning talks at recon.eu and hack.lu)

• Since 2017 fuzzing talks

• DefCamp, Heise devSec, IT-SeCX, BSides Vienna, RuhrSec

Introduction

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

mailto:r.freingruber@sec-consult.com
https://twitter.com/ReneFreingruber

© 2018 SEC Consult | All rights reserved

Vienna (HQ) | AT

Wiener Neustadt | AT

Vilnius | LT

Berlin| DE
Montreal | CA

Singapore | SG

Moscow | RU

Zurich | CH

ADVISOR FOR YOUR INFORMATION SECURITY

SEC Consult Offices

SEC Consult Clients

Bangkok | TH

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Founded 2002 (15+ years consulting)

Strong customer base in Europe and Asia

100+ Security experts

120+ certifications

500+ Security audits per year

© 2018 SEC Consult | All rights reserved

• Ask anything anytime!

• My english is not the best – please use simple words ☺

• Tell me if I‘m too fast!

• Tell me if there is anything you don‘t understand!

• Tell me if it‘s too easy / too hard!

• Contact me:

• E-Mail: r.freingruber@sec-consult.com

• Twitter: @ReneFreingruber

… Tell me if you want to have a break ☺

Some rules

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

mailto:r.freingruber@sec-consult.com
https://twitter.com/ReneFreingruber

© 2018 SEC Consult | All rights reserved

• Some demos building on great stuff from others!

• LibFuzzer Tutorial (From Google and Workshop from Dor1s, @Dor3s)

• Seccon 2016 CTF chat binary

• FuzzGoat (from fuzzstati0n)

• Of course all the great fuzzers like AFL, LibFuzzer, WinAFL, honggfuzz, …

• Many demos just require to type in commands…

• It‘s the nature of the topic (we don‘t want to implement everything our self)

• I want to use the full time to learn you as much as possible (the basics!)

• If you want “open examples” just try the learned stuff at home with some

applications! (if you have questions drop me a mail or write on twitter)

Demos

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

Fuzzing

© 2018 SEC Consult | All rights reserved

Definition of fuzzing (source Wikipedia):

Fuzzing or fuzz testing is an automated software testing

technique that involves providing invalid, unexpected, or

random data as inputs to a computer program. The program is

then monitored for exceptions such as crashes, or failing

built-in code assertions or for finding potential memory

leaks.

Fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Why do we need Fuzzing?

Microsoft Security Development Lifecycle (SDL) Process

Source: https://www.microsoft.com/en-us/SDL/process/verification.aspx

I also recommend fuzzing during implementation

Example: You finished a complex task and you are not sure if
it behaves correctly and is secure

➔ Start a fuzzer over night / the weekend ➔ Check corpus

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://www.microsoft.com/en-us/SDL/process/verification.aspx

© 2018 SEC Consult | All rights reserved

SDL Phase 4 Security Requirements

Where input to file parsing code could have crossed a trust boundary, file fuzzing

must be performed on that code. […]

• An Optimized set of templates must be used. Template optimization is based on

the maximum amount of code coverage of the parser with the minimum number of

templates. Optimized templates have been shown to double fuzzing effectiveness

in studies. A minimum of 500,000 iterations, and have fuzzed at least 250,000

iterations since the last bug found/fixed that meets the SDL Bug Bar.

Why do we need Fuzzing?

Source: https://msdn.microsoft.com/en-us/library/windows/desktop/cc307418.aspx

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://msdn.microsoft.com/en-us/library/windows/desktop/cc307418.aspx

© 2018 SEC Consult | All rights reserved

• Advantages:

• Very fast (in most cases much faster than manual source code review)

• You don’t have to pay a human, only the power consumption of a computer

• It runs 24 hours / 7 days, a human works only 8 hours / 5 days

• Scalable (want to find more bugs? ➔ Start 100 fuzzing machines instead of 1)

• Disadvantages:

• Deep bugs (lots of pre-conditions) are hard to find

• Typically you can’t find business logic bugs

Fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Grammar-based Fuzzing :
• Idea: Implement the file format / protocol inside your fuzzer

• Example: “at offset 4 is an unsigned dword, at offset 10 is a checksum, at offset 14 is a null-
terminated string, at offset 20 a type field, …”

• Covers everything which you defined (but maybe forgets corner cases which you didn’t think
of)

• After the (long) initial work, the fuzzer covers lots of corner cases very fast

• Examples: Peach, Domato, Boofuzz, Sulley, Spike, …

• Feedback-based Fuzzing:
• Let the fuzzer learn the file format itself ➔ No initial work required (fast results)

• However, learning the format can take a long time and maybe some checks could not be
learned by the fuzzer

• ➔ If we build better feedback-based fuzzers it has no (or just small) drawbacks

• Examples: AFL, WinAFL, LibFuzzer, Honggfuzz, …

• Side note: Use this technique for binary inputs. For “interactive” inputs (e.g.: JavaScript / DOM
in browser or shell-like software which listens on a port) this technique is only partially useful.

Types of Fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

Feedback-based Fuzzing /
Coverage-guided Fuzzing

© 2018 SEC Consult | All rights reserved

➔ Consider this code:

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 1: 00 00 00 00 00 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 1: 01 00 00 00 00 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 1: 02 00 00 00 00 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 1: FF 00 00 00 00 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 1: 00 01 00 00 00 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 1: 00 02 00 00 00 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 1: 00 FF 00 00 00 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 1: 00 00 01 00 00 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 1: 00 00 54 00 00 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 1: 00 00 55 00 00 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

Input 2: 00 00 55 00 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 1: 00 00 56 00 00 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

Input 2: 00 00 55 00 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 1: 00 00 FF 00 00 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

Input 2: 00 00 55 00 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 1: 00 00 00 A9 00 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

Input 2: 00 00 55 00 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 1: 00 00 00 AA 00 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

Input 2: 00 00 55 00 00 00

Input 3: 00 00 00 AA 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 1: 00 00 00 AB 00 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

Input 2: 00 00 55 00 00 00

Input 3: 00 00 00 AA 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 1: 00 00 00 00 00 FF

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

Input 2: 00 00 55 00 00 00

Input 3: 00 00 00 AA 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 2: 01 00 55 00 00 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

Input 2: 00 00 55 00 00 00

Input 3: 00 00 00 AA 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 2: 02 00 55 00 00 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

Input 2: 00 00 55 00 00 00

Input 3: 00 00 00 AA 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 2: 00 00 55 AA 00 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

Input 2: 00 00 55 00 00 00

Input 3: 00 00 00 AA 00 00

<no new entry because we

already saw that coveage>

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 2: 00 00 55 00 00 FF

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

Input 2: 00 00 55 00 00 00

Input 3: 00 00 00 AA 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 3: 01 00 00 AA 00 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

Input 2: 00 00 55 00 00 00

Input 3: 00 00 00 AA 00 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 3: 00 00 00 AA FF 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

Input 2: 00 00 55 00 00 00

Input 3: 00 00 00 AA 00 00

Input 4: 00 00 00 AA FF 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 3: 00 00 00 AA 00 FF

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

Input 2: 00 00 55 00 00 00

Input 3: 00 00 00 AA 00 00

Input 4: 00 00 00 AA FF 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 4: 01 00 00 AA FF 00

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

Input 2: 00 00 55 00 00 00

Input 3: 00 00 00 AA 00 00

Input 4: 00 00 00 AA FF 00

© 2018 SEC Consult | All rights reserved

➔ Fuzz input 4: 00 00 00 AA FF CC

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Fuzzer queue:

Input 1: 00 00 00 00 00 00

Input 2: 00 00 55 00 00 00

Input 3: 00 00 00 AA 00 00

Input 4: 00 00 00 AA FF 00

➔ Vulnerability found!

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

Popular Fuzzers

© 2018 SEC Consult | All rights reserved

• One of the most famous file-format fuzzers

• Developed by Michal Zalewski

• Instruments application during compile time (GCC or LLVM)

• Binary-only targets can be emulated / instrumented with qemu

• Forks exist for PIN, DynamoRio, DynInst, syzygy, IntelPT, … (more on this later!)

• Simple to use! (start fuzzing in under 1 minute!)

• Good designed! (very fast & good heuristics)

American Fuzzy Lop - AFL

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Consider this code (x = argc):

Feedback based fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Basic Blocks:

Feedback based fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Just use afl-gcc instead of gcc…

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Result:

Feedback based fuzzing

Store old

register values

Instrumentation

Restore old

register values

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

American Fuzzy Lop - AFL

Source:

http://lcamtuf.coredump.cx/afl_

gzip.png

Without instrumentation just the

first level will be discovered (or it

would take an extremely long time)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Practice: Lection 1

Topic: Lection 1 – Simple
AFL fuzzing

Duration: 5 – 10 min

Description: Try AFL in
action with a simple and
small target.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

AFL Status Screen

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• We can either start fuzzing with an empty input folder or with downloaded /

generated input files

• Empty file:
• Let AFL identify the complete format (unknown target binaries)

• Downside: Can be very slow

• Downloaded sample files:
• Much faster because AFL doesn‘t have to find the file format structure itself

• Bing API to crawl the web (Hint: Don‘t use DNS of your provider …)

• Other good sources: Unit-tests, bug report pages, …

• Problem: Many sample files execute the same code ➔ Corpus Distillation

Input Corpus

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Example: Let’s say we want to fuzz LIEF (Library to Instrument Executable

Formats from Quarkslab) with PE files

• Our real goal: Generate a good PE-corpus which we can use for fuzzing

AntiVirus engines (therefore we first fuzz different open source PE libraries)

• Side note: LIEF is a very powerful PE library and my first choice in PE libraries!

That’s why I have chosen it as target here!

• Step 1: Get possible input files:

• Write a python script to grab all small .exe / .dll / .sys / … files from a

workstation (execute it on Windows XP, Vista, Win7, Win8.1, Win10, …)

• Add public available corpus files: I found additional 2149 files on the internet

• Result: Many thousand files

Example

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Step 2: Recompile application with afl-gcc

• I modified the c++ “pe_reader” example to catch all exceptions (otherwise AFL

would incorrectly identify thrown exceptions as crashes)

• Export CC & CXX and call cmake / configure

git clone https://github.com/lief-project/LIEF.git

cd LIEF

mkdir build;cd build

export CC=afl-gcc

export CXX=afl-g++

cmake -DPYTHON_VERSION=2.7 ..

make

Example

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Step 3: Minimize the files to a small corpus (Corpus Distillation)

• Optional: Do everything on a RAM disk (e.g.: /dev/shm):

mkdir /ramdisk

mount -t tmpfs -o size=4G tmpfs /ramdisk

• Example: The 2149 public files can be reduced to 377 files

Example

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Step 4: Minimize file size of the files in the corpus

• Not very efficient in the case of PE files (byte removal / modification lead to invalid

checksum ➔ different executed code ➔ AFL-tmin can’t reduce it)

• For example: In total the filesize of all 377 files together was just reduced by 400

KB

./afl-tmin –i testcase_file –o testcase_out_file

–- /path/to/tested/program [...program's cmdline...] @@

• Step 5: Start fuzzing
afl-fuzz -i input_after_tmin -o output/ -M master -- ./pe_reader @@

afl-fuzz -i input_after_tmin -o output/ -S slave1 -- ./pe_reader @@

Example

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Example

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Side note:

This are in

reality only 2

(not exploita.)

bugs in the

code.

(LIEF ships

with LibFuzzer

scripts!)

© 2018 SEC Consult | All rights reserved

Steps for fuzzing with AFL:

1. Remove input files with same functinality:
Hint: Call it after tmin again (cmin is a heuristic)
./afl-cmin –i testcase_dir –o testcase_out_dir

-- /path/to/tested/program [...program's cmdline...]

2. Reduce file size of input files:
./afl-tmin –i testcase_file –o testcase_out_file

–- /path/to/tested/program [...program's cmdline...]

3. Start fuzzing:
./afl-fuzz -i testcase_dir -o findings_dir

-- /path/to/tested/program [...program's cmdline...] @@

American Fuzzy Lop - AFL

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Real world example

• CVE-2009-0385

• Vulnerability from 2009 in FFMPEG

• Vulnerability in parsing .4xm files

• More information (on exploit development) can be found in “A bug hunter’s

diary” chapter 5

Real World example: CVE-2009-0385

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Input .4xm file (with video & audio stream):

Real World example: CVE-2009-0385

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Dumb fuzzer:

Real World example: CVE-2009-0385

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Original:

• Fuzzer found crash:

Real World example: CVE-2009-0385

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Verify the crash in the debugger:

Real World example: CVE-2009-0385

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Attacker has a write-4 vulnerability (destination and value controlled):

Real World example: CVE-2009-0385

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Now assume we don’t have a valid 4xm file:

• Before modification:

• After modification:

Real World example: CVE-2009-0385

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• ➔ The dumb fuzzer can’t find the vulnerability anymore!

Real World example: CVE-2009-0385

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Many other crashes…

But not the real vulnerability at

offset 0x1ae

Reason: In error case the

code dereferences the pointer

to the „strk“ chunk which is in

this case NULL

© 2018 SEC Consult | All rights reserved

Practice: Lection 2

Topic: Lection 2 – Real
World Fuzzing FFMPEG
with AFL

Duration: 10 – 15 min

Description: Try to fuzz
FFMPEG with AFL

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

AFL with CVE-2009-0385 (FFMPEG)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• AFL input with invalid 4xm file (strk chunk changed to strj)

• AFL still finds the vulnerability!

• Level 1 identifies correct “strk” chunk

• Level 2 based on level 1 output AFL finds the vulnerability (triggered by 0xffffffff)

AFL with CVE-2009-0385 (FFMPEG)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Some hints on analyzing exploitability / root cause:

• First command to execute when the application crashes is:

• x /2i $rip

• X… examine ➔ print something at the given location ($rip in our case)

• $rip … instruction pointer ➔ the current instruction

• /2i … print 2 times data interpreted as instruction

• Now we see which instruction resulted in a crash and the next step is to

understand why it crashed

Crash Triage

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Examples:

• Mov dword ptr [rcx+0x20], eax

• Mov rbx, qword ptr [rax]

• Every time you see [and] it means that we read/write from RAM memory ➔ In most

cases the address inside the brackets is therefore wrong and resulted in a crash. So we

would analyze rcx and rax in the above outputs: p /x $rcx ; p /x $rax

• In many cases you can control rcx or rax (e.g: it contains 0x414141..) then you maybe

have an arbitrary read or write. In other cases you may have a relative read/write and in

other cases it contains a fixed address which can’t be accessed (which can indicate a

use-after-free bug)

• In many other cases rcx or rax is just zero which resulted in a null pointer exception

(because our input didn’t initialized it); This is in most cases not exploitable

Crash Triage

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Examples:
• => 0x4141414141414141: Cannot access memory at address

0x4141414141414141

• This means $rip points to 0x4141… and therefore we had most likely a stack based
buffer overflow and overwrote the return address on the stack

• ret

• Sometimes you directly crash at the “ret” instruction (which is basically a “pop rip”) if the
return address is invalid. This for example is the case in ARM gdb.

• inc eax

• No obvious reason how this instruction could crash. This often occurs if $rip points to a
memory region which is not marked as executable (DEP/NX protection). Therefore “inc
eax” is stored in such a region. To verify you can type “shell”, then “pidof
<applicationName” and then check: cat /proc/<PID>maps if the memory range is
executable or not.

Crash Triage

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Examples:

• leave

• A little bit more tricky: leave is the same as “mov esp, ebp ; pop ebp”. The move

instruction cannot crash (if it’s in an executable memory range), therefore “pop ebp”

must crash. Pop ebp reads from the stack (where ESP points to)

• <vfprintf> mov dword ptr [rax], r9d

• Since the crash occurred in a standard function (vfprintf) it often helps to check the stack

backtrace with “backtrace”. Check the last function call in the application ➔ Arguments

to the library function are very likely incorrect.

Crash Triage

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• We use CrashWalk from Ben Nagy for Crash Triage (crash analysis)

• https://github.com/bnagy/crashwalk

• Cwtriage --root afl_output –afl

• Cwdump ./crashwalk.db

• Cwfind <crash hash>

• GDB / WinDbg Plugin !exploitable

• Another great possibility on Windows is the BugId tool by SkyLined

• https://github.com/SkyLined/BugId

• Symbolic execution can also help in triage

• For example: SymGDB, Triton, PONCE, Moflow tools

Crash Triage

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://github.com/bnagy/crashwalk
https://github.com/SkyLined/BugId

© 2018 SEC Consult | All rights reserved

Practice: Lection 3

Topic: Lection 3 –
FuzzGoat and Crash
Triage

Duration: 5-10 min

Description: Learn to
perform crash triage.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Instrumentation tracks edge coverage, injected code at every basic block:

➔ AFL can distinguish between

• A->B->C->D->E (tuples: AB, BC, CD, DE)

• A->B->D->C->E (tuples: AB, BD, DC, CE)

Edge vs. BasicBlock Coverage

cur_location = <compile_time_random_value>;

bitmap[(cur_location ^ prev_location) % BITMAP_SIZE]++;

prev_location = cur_location >> 1;

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Basic Blocks:

Feedback based fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Instrumentation tracks edge coverage, injected code at every basic block:

➔ AFL can distinguish between

• A->B->C->D->E (tuples: AB, BC, CD, DE)

• A->B->D->C->E (tuples: AB, BD, DC, CE)

➔ Without shifting A->B and B->A are indistinguishable

Edge vs. BasicBlock Coverage

cur_location = <compile_time_random_value>;

bitmap[(cur_location ^ prev_location) % BITMAP_SIZE]++;

prev_location = cur_location >> 1;

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• AFL receives after every iteration a “coverage_map”.

• Every byte in the map represents a hitcount for an edge (or basic block)

• Hitcounts are translated to bucket indexes to mark a unique edge + hitcount combination

with one bit!

• ➔ A global coverage map stores information about the already seen coverage by doing

an AND after every iteration. If one iteration has at one bit a 1 where the global coverage

map stores a 0 new behavior is detected ➔ Very fast check for new behavior!

Edge vs. BasicBlock Coverage

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Consider the following code; Our input file has 0xaa at offset 10, 0x00 at all other positions

• BasicBlock Coverage: Vulnerability (uninitialized variable) will not be found (or very late)

• Edge Coverage: Vulnerability will be found because input will be mutated to not contain 0xaa

at offset 10 (This input will be added to the queue)

Edge vs. BasicBlock Coverage

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

Some public fuzzing numbers

© 2018 SEC Consult | All rights reserved

• Example: Talk by Charlie Miller from 2010 „Babysitting an Army of Monkeys“

• Fuzzed Adobe Reader, PPT, OpenOffice, Preview

• Strategy: Dumb fuzzing

• Download many input files (PDF 80 000 files)

• Minimal corpus of input files with valgrind (PDF 1515 files)

• Measure CPU to know when file parsing ended

• Only change bytes (no adding / removing)

• Simple fuzzer in 5 LoC

Some public fuzzing numbers

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Some public fuzzing numbers

Fuzzer:

Source: Charlie Miller „Babysitting an Army of Monkeys“

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Some public fuzzing numbers

Source: Charlie Miller „Babysitting an Army of Monkeys“

Results:
• 3 months fuzzing

• 7 Million Iterations

Crashes with unique EIP:

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Other numbers from Jaanus Kääp:

• https://nordictestingdays.eu/files/files/jaanus_kaap_fuzzing.pdf

• Code coverage for minset calculation (no edge coverage because of speed)

• PDF ➔ initial set 400 000 files ➔ Corpus 1217 files

• DOC ➔ initial set 400 000 files ➔ Corpus 1319 files

• DOCX ➔ initial set 400 000 files ➔ Corpus 2222 files

Some public fuzzing numbers

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://nordictestingdays.eu/files/files/jaanus_kaap_fuzzing.pdf

© 2018 SEC Consult | All rights reserved

Google fuzzed Adobe Flash in 2011:

„What does corpus distillation look like at Google scale? Turns out we have a

large index of the web, so we cranked through 20 terabytes of SWF file

downloads followed by 1 week of run time on 2,000 CPU cores to calculate the

minimal set of about 20,000 files. Finally, those same 2,000 cores plus 3 more

weeks of runtime were put to good work mutating the files in the minimal set

(bitflipping, etc.) and generating crash cases. “

The initial run of the ongoing effort resulted in about 400 unique crash signatures,

which were logged as 106 individual security bugs following Adobe's initial triage.

• Source: https://security.googleblog.com/2011/08/fuzzing-at-scale.html

Some public fuzzing numbers

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://security.googleblog.com/2011/08/fuzzing-at-scale.html

© 2018 SEC Consult | All rights reserved

Google fuzzed the DOM of major browsers in 2017:

https://googleprojectzero.blogspot.co.at/2017/09/the-great-dom-fuzz-off-of-2017.html

Some public fuzzing numbers

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://googleprojectzero.blogspot.co.at/2017/09/the-great-dom-fuzz-off-of-2017.html

© 2018 SEC Consult | All rights reserved

Google fuzzed the DOM of major browsers in 2017:

Some public fuzzing numbers

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Source: https://googleprojectzero.blogspot.co.at/2017/09/the-great-dom-fuzz-off-of-2017.html

https://googleprojectzero.blogspot.co.at/2017/09/the-great-dom-fuzz-off-of-2017.html

© 2018 SEC Consult | All rights reserved

Google created OSS-Fuzz – Continuous Fuzzing for Open Source

Software
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html

Some public fuzzing numbers

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

Methods to extract coverage feedback

© 2018 SEC Consult | All rights reserved

1. Instrumentation during compilation (source code available; gcc or llvm ➔ AFL)

2. Emulation of binary (e.g. with qemu)

Methods to measure code-coverage

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

AFL qemu mode

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Practice: Lection 5

Topic: Lection 5 – AFL
Qemu mode

Duration: 2-5 min

Description: Use Qemu
mode to fuzz closed source
binaries. Compare execution
speed.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Blogpost from 21-09-2018: Improving AFL’s qemu mode performance

• From Andrea, a BSc student at University of Padova!

• https://abiondo.me/2018/09/21/improving-afl-qemu-mode/

• His AFL fork: https://github.com/abiondo/afl

• Performance increase of 3x-4x times!

• Basic idea: AFL disables “block chaining” in QEMU to also trace direct jumps
(with chaining it would not make the callback to log the block).

• Block chaining is important for performance, the patch from Andrea modifies the
code in a way that “block chaining” can again be enabled and code gets inserted
(without callbacks) ➔ Better performance

• Moreover he added code to “cache block chains” between forked childs!

AFL Qemu mode

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://abiondo.me/2018/09/21/improving-afl-qemu-mode/
https://github.com/abiondo/afl

© 2018 SEC Consult | All rights reserved

1. Instrumentation during compilation (source code available; gcc or llvm ➔ AFL)

2. Emulation of binary (e.g. with qemu)

3. Writing own debugger and set breakpoints on every basicblock (slow, but useful

in some situations)

Methods to measure code-coverage

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Disadvantage:

• It’s very slow

• Statically setting breakpoints can speedup the process, but it’s still

slow because of the debugger process switches

• Only applicable if we remove a breakpoint after the first hit ➔ We

only measure code-coverage (without a hit-count), edge-coverage

not possible or extremely slow

• On-disk files are modified (statically), which can be detected with

checksums (e.g. Adobe Reader .api files)

Code-Coverage via Breakpoints

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Advantage:

• Minset calculation

• Detection if a new file has new code-coverage is very fast (native

runtime) because we statically set breakpoints for unexplored code

and run the application without a debugger

• If it crashes we know it hit one of our breakpoints and therefore

contains unexplored code

Code-Coverage via Breakpoints

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

1. Instrumentation during compilation (source code available; gcc or llvm ➔ AFL)

2. Emulation of binary (e.g. with qemu)

3. Writing own debugger and set breakpoints on every basicblock (slow, but useful

in some situations)

4. Dynamic instrumentation of compiled application (no source code required;

tools: DynamoRio, PIN, Valgrind, Frida, …)

Methods to measure code-coverage

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

1. Instrumentation during compilation (source code available; gcc or llvm ➔ AFL)

2. Emulation of binary (e.g. with qemu)

3. Writing own debugger and set breakpoints on every basicblock (slow, but useful

in some situations)

4. Dynamic instrumentation of compiled application (no source code required;

tools: DynamoRio, PIN, Valgrind, Frida, …)

5. Static instrumentation via static binary rewriting (Talos fork of AFL which uses

DynInst framework – AFL-dyninst, should be fastest possibility if source code is

not available but it’s not 100% reliable and currently Linux only); WinAFL in

syzygy mode is very useful on Windows if source-code is available!

Methods to measure code-coverage

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

1. Instrumentation during compilation (source code available; gcc or llvm ➔ AFL)

2. Emulation of binary (e.g. with qemu)

3. Writing own debugger and set breakpoints on every basicblock (slow, but useful

in some situations)

4. Dynamic instrumentation of compiled application (no source code required;

tools: DynamoRio, PIN, Valgrind, Frida, …)

5. Static instrumentation via static binary rewriting (Talos fork of AFL which uses

DynInst framework – AFL-dyninst, should be fastest possibility if source code is

not available but it’s not 100% reliable and currently Linux only); WinAFL in

syzygy mode is very useful on Windows if source-code is available!

6. Use of hardware features

• IntelPT (Processor Tracing); available since 6th Intel-Core generation (~2015)

• WindowsIntelPT (from Talos) or kAFL

Methods to measure code-coverage

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

Areas which influent fuzzer results

© 2018 SEC Consult | All rights reserved

Areas which influence fuzzing results

Fuzzer

Results

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Areas which influence fuzzing results

Fuzzer speed

Fuzzer

Results

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Fuzzer Speed

1. Use a RAM Disk

2. Remove slow API calls

3. Fork Server (AFL’s Fork Server was designed by Jann Horn)

4. Deferred Fork Server

5. Persistent Mode (in-memory fuzzing)

6. Prevent process switches (between target application and the Fuzzer) by injecting the Fuzzer
code into the target process

7. Modify the input in-memory instead of on-disk

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Example to the Fork Server:

With Fork Server:

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Example to the Fork Server:

Without Fork Server:

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Areas which influence fuzzing results

Input filesize

Fuzzer

Results

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Input file size

• The input file size is extremely important!

• Smaller files

• Have a higher likelihood to change the correct bit / byte during fuzzing

• Are faster processed by deterministic fuzzing

• Are faster loaded by the target application

• AFL ships with two utilities

• AFL-cmin: Reduce number of files with same functionality

• AFL-tmin: Reduce file size of an input file

• Uses a “fuzzer” approach and heuristics

• Runtime depends on file size

• Problems with file offsets

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Input file size

• Example: Fuzzing mimikatz

• Initial memory dump: 27 004 528 Byte

• Memory dump which I fuzzed: 2 234 Byte

➔ I’m approximately 12 000 times faster with this setup…

• You would need 12 000 CPU cores to get the same result in the same time as my

fuzzing setup with one CPU core

• Or with the same number of CPU cores you need 12 000 days (~33 years) to get the

same result as I within one day

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Heat map of the memory dump (mimikatz access)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Heat map of the memory dump (mimikatz access) - Zoomed

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Fuzzing and exploiting mimikatz

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

See below link for in-depth discussion how I fuzzed mimikatz with WinAFL:

https://www.sec-consult.com/en/blog/2017/09/hack-the-hacker-fuzzing-mimikatz-on-windows-with-winafl-

heatmaps-0day/index.html

https://www.sec-consult.com/en/blog/2017/09/hack-the-hacker-fuzzing-mimikatz-on-windows-with-winafl-heatmaps-0day/index.html

© 2018 SEC Consult | All rights reserved

• Example: Niklas B (@_niklasb) fuzzed map files in Counter-Strike Global
Offensive and found lots of bugs/vulns with AFL Qemu mode!

• https://phoenhex.re/2018-08-26/csgo-fuzzing-bsp

• You should definitely read the blog post!

• Important decisions to mention

• He fuzzed the Linux binaries (with Qemu mode)

• He fuzzed the server (command line) and not the 3D game client

• He wrote a script to reduce input file size from 300 KB to 16 KB

• Cite from the blog post: “Input file size matters a lot. By going down from 300KB to
16KB I gained at least a factor of 5 in performance. Probably even smaller would be
even better.”

• Initial runtime per iteration was 15+ seconds ➔ He wrote a custom wrapper which
just calls the required functions ➔ ~50 exec / sec per thread

AFL Qemu mode

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://twitter.com/_niklasb
https://phoenhex.re/2018-08-26/csgo-fuzzing-bsp

© 2018 SEC Consult | All rights reserved

https://phoenhex.re/2018-08-26/csgo-fuzzing-bsp

AFL Qemu mode

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://phoenhex.re/2018-08-26/csgo-fuzzing-bsp

© 2018 SEC Consult | All rights reserved

Areas which influence fuzzing results

Mutators

Fuzzer

Results

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

AFL Mutation

• AFL performs deterministic, random, and dictionary based mutations

• AFL has a very good deterministic mutation algorithms

• Deterministic mutation strategies:

• Bit flips

• single, two, or four bits in a row

• Byte flips

• single, two, or four bytes in a row

• Simple arithmetics

• single, two, or four bytes

• additions/subtractions in both endians performed

• Known integers

• overwrite values with interesting integers (-1, 256, 1024, etc.)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

AFL Mutation

• Random mutation strategies performed for an input file

after deterministic mutations are exhausted.

• Random mutation strategies:

• Stacked tweaks

• performs randomly multiple deterministic mutations

• clone/remove part of file

• Test case splicing

• splices two distinct input files at random locations and joins

them

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Consider Lection 6 with the following code:

• Question: Can AFL identify this bug?

Magic Values

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Practice: Lection 6

Topic: Lection 6 – Magic
Values

Duration: 5-10 min

Description: See the
impact of magic values in
fuzzing.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Circumventing Fuzzing Roadblocks with Compiler Transformation.

• Enforce “Compiler Deoptimization” with LLVM compiler passes.

• https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-

compiler-transformations/

Magic Values

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

vs.

https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/

© 2018 SEC Consult | All rights reserved

• With LD_PRELOAD function implementations can be replaced for dynamically

loaded libraries

• Just compile a library containing a function with the name of the target function

which behavior you want to change

• LD_PRELOAD=/path/to/your/library.so ./target_application

• With AFL you can use AFL_PRELOAD=… afl-fuzz … -- ./target_application

• Preeny contains other useful examples (especially for CTFs)

• https://github.com/zardus/preeny

• Defork: Remove fork()

• Desleep / Dealarm / Deptrace / Desrand: Often useful for CTFs

• Hint: Replace network function to read from files instead ➔ Fuzz it with AFL

LibTokenCap

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://github.com/zardus/preeny

© 2018 SEC Consult | All rights reserved

• LibTokenCap memcmp example:

LibTokenCap

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

Log the token
Only read-only

Original memcmp implementation

© 2018 SEC Consult | All rights reserved

Practice: Lection 7

Topic: Lection 7 –

LibTokenCap

Duration: 5-10 min

Description: See

LibTokenCap in action.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Areas which influence fuzzing results

Detection rate

Fuzzer

Results

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

SECCON Chat CTF Binary

Task:

Go to lection 9 (skip lection 8 for the moment), copy

the „chat“ binary and try to identify security

vulnerabilities by playing with the binary.

Can you spot the vulnerability?

Please don‘t read the solution file yet!

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

➔Did someone detect a crash in the binary?

➔What do you think: how many vulnerabilities are in this binary?

➔Other real world example: Heartbleed is a read buffer overflow and does not lead

to a crash…

➔ We (the Fuzzer) need a way to detect such flaws / vulnerabilities!

Detecting not crashing vulnerabilities

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Page (4096 byte), read- & write-able

Heap Overflow Detection

Heap Data 1
Meta

Data
Heap Data 2

Meta

Data

Heap Overflow

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Page (4096 byte), read- & write-able

Heap Overflow Detection

Heap Data 1
Meta

Data

Heap Overflow

Page (4096 byte)

NOT read- & write-able

Page (4096 byte), read- & write-able

Heap Data 2
Meta

Data

Page (4096 byte)

NOT read- & write-able

Unused (special pattern)

Unused (special pattern)

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Page (4096 byte), read- & write-able

Use-After-Free Detection

Heap Data 1
Meta

Data

FREE

Page (4096 byte)

NOT read- & write-able

Unused (special pattern)

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Page (4096 byte)

NOT read- & write-able

Use-After-Free Detection

Access attempt

Page (4096 byte)

NOT read- & write-able

Heap Data 1
Meta

Data

Access attempt

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• On Linux: LibDislocator (shipped with AFL)

• Replaces the heap allocator to detect heap corruptions

• Works also against closed source applications

• On Windows: Page heap with Application Verifier

• Own heap allocator which checks after free() all memory locations for a dangling

pointer!

• Detect Use-After-Free at free and not at use step

• Concept similar to MemGC protection from Edge

• AFL_HARDEN=1 make (Fortify Source & Stack Cookies)

Heap Library

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Libdislocator

• We can also set AFL_HARDEN=1 before make (Fortify Source & Stack Cookies)

Heap Library

One extra page

which is not RW

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Practice: Lection 8

Topic: Lection 8 –

LibDislocator

Duration: 20 min

Description: See

LibDislocator in action.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Libdislocator catches heap overflow

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Radamsa is a very powerful input mutator

• If you don‘t want to write a mutator yourself, just use radamsa!

• https://github.com/aoh/radamsa

Radamsa

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://github.com/aoh/radamsa

© 2018 SEC Consult | All rights reserved

• Problem of radamsa: External program execution is slow (no library support)

• Already submitted by others as issue: https://github.com/aoh/radamsa/issues/28

• Example: SECCON CTF fuzzer for the chat binary

• Test 1: Before every execution we mutate the input with a call to radamsa

• Result: Execution speed is ~17 executions per second

• Test 2: Mutate input with python (no radamsa at all)

• Result: Execution speed is ~740 executions per second

• ➔ Always create multiple output files (e.g.: 100 or 1000) or use IP:Port output

Radamsa

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://github.com/aoh/radamsa/issues/28

© 2018 SEC Consult | All rights reserved

• Testcases as input:

Radamsa

test1.txt test2.txt test3.txt

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Often seen wrong use of radamsa:

Radamsa

Possible output

Only variations of

the current input file

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Correct invocation:

Radamsa

Possible output

Combination of

multiple input files!

Always generate multiple
outputs (100 or 1000; 100 is
recommended by radamsa)

However, merging of multiple input files is very
unlikely (“send msg + delete user + view msg” will
not be found within 2 hours)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Correct selection of mutators (Example of the “chat” target):

Radamsa

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Radamsa is written in Owl Lisp (a functional dialect of Scheme)

• Modifying the code is hard (at least for me because I don’t know Owl Lisp)

• Currently no library support  (➔ Slower than in-memory mutation)

• Good mutation and gramma detection (~ 3500 lines)

• Maintained

• Ni is written in C

• Simple to modify, add to own project or compile as library (and it’s fast)

• https://github.com/aoh/ni (from the same guys)

• Not as advanced as radamsa  (~800 lines)

• Not maintained: Last commit 2014

Radamsa vs. Ni

Ni can also merging multiple inputs

➔ Other inputs are only used during “random_block()” function

➔ Merging / Gramma detection not so advanced as with radamsa

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://github.com/aoh/ni

© 2018 SEC Consult | All rights reserved

Speed comparision

• The following table gives a speed comparison between different test setups for

mutating data

• Numbers in the table are generated testcases per second

• Table does not contain fuzzing or file read/write times (only generation of fuzz data)

• TC stands for number of test cases

• RD stands for RAM disk for files & programs

• Test program was a Python script

• Radamsa fast mode uses the following mutators:

• -m bf,bd,bi,br,bp,bei,bed,ber,sr,sd

• Taken from FAQ from https://github.com/aoh/radamsa

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://github.com/aoh/radamsa

© 2018 SEC Consult | All rights reserved

Speed comparision – input small text files

Type of test Radamsa ext. Radamsa fast ext. Ni ext. Ni library (ctypes)

Input stdin (1 tc), output

stdout (1 tc)
~ 265 ~ 345 (no stdin support) -

Input files (3 tc), output

stdout (1 tc)
~ 255 ~300 ~775 -

Input files (3 tc), output via

files (100 tc)
~1100 ~1930 ~7300 -

Input via files (3 tc), output

via files (1000 tc)
~1100 ~2150 ~8350 -

Input files (3 tc), output via

files (100 tc); RD
~1220 ~2740 ~7300 -

Input files (3 tc), output via

files (1000 tc); RD
~1230 ~3100 ~8400 -

Input 3 samples, output

one (all in-memory)
- - - ~4000

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

The following input triggers the second Use-After-Free flaw in the chat binary:

The problem of the search space

send_private_message

user2

content

delete_user

login

user2

view_messages

register

user1

register

user2

login

user1

Depth 1

Depth 6

Depth 10

Depth 13

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

The problem of the search space

empty

user1 user2 login send…

register user2 login send…

register

register user1 user2 login send…

user1

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

register

register

user1

register

user1

register

<empty>

© 2018 SEC Consult | All rights reserved

• We need at least 7 distinct input-tokens to find the flaw (register, user1,
user2, login, send_private_message, delete_user, view_message)

• During real fuzzing we have way more inputs (all possible commands, special
chars, long strings, special numbers, ….)

• After every input line we can again select one from the 7 possible input-tokens

• We have to find 13 input lines in the correct order to trigger the bug!

• For 13 input lines we have 7^13 = 96 889 010 407 possibilities

➔Runtime of the fuzzer to find this flaw?

➔This is also a huge difference to file format fuzzing! File format fuzzing does not
produce such huge search spaces, because “commands” can’t be sent at every
node in the tree! (nodes have less children)

➔ AFL is not the best choice to fuzz such problems

The problem of the search space

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

➔ We must reduce the search space!

• Initial Start-Sequence (Create Users) (This can be seen as our “input corpus”)

• Initial End-Sequence (Check public and private messages of all users)

• Encode the format into the fuzzer
• Example: send_message(username, random_string_msg))

• ➔ Peach Fuzzer

• But that was basically what we wanted to avoid (Fuzzer should work without modification)

• Instead of adding one command per iteration, add many commands (inputs)
• Same when fuzzing web browsers ➔ Add thousands of html, svg, JavaScript, CSS, …

lines to one test case and check for a crash

• Important: Too many commands can create invalid inputs (e.g. invalid command ➔ Exit
application)

• Additional feedback to “choose” promising entries (E.g.: prefer text output which was not
seen yet, prefer fuzzer queue entries which often produce new output, …)

The problem of the search space

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

The following input triggers the second Use-After-Free flaw in the chat binary:

The problem of the search space

send_private_message

user2

content

delete_user

login

user2

view_messages

register

user1

register

user2

login

user1

Depth 4

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Practice: Lection 9

Topic: Lection 9 – CTF

Chat binary fuzzing

Duration: 5-10 min

Description: See how to

fuzz a CTF binary.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Chat CTF Fuzzer

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

• Runtime to find the deep second UAF (Use-After-Free) vulnerabiltiy…

• UAF1 was removed from patched binary because UAF1 would trigger before UAF2

• This fuzzer also works for any other CTF binary!!

© 2018 SEC Consult | All rights reserved

Demo Time!

Topic: Mimikatz vs.
GFlags & Application
Verifier with PageHeap on
Windows

Runtime: 3 min 15 sec

Description: See how to
find bugs by just using the
application and enabling
the correct verifier settings.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• LLVM has many useful sanitizers!
• Address-Sanitizer (ASAN): -fsanitize=address

• Out-of-bounds access (Heap, stack, globals), Use-After-Free, …

• Memory-Sanitizer (MSAN): -fsanitize=memory
• Uninitialized memory use

• UndefinedBehaviorSanitizer (UBSAN): -fsanitize=undefined
• Catch undefined behavior (Misaligned pointer, signed integer overflow, …)

• If you don‘t have source code: DrMemory (based on DynamoRio)

• Use sanitizers during development
• You can also grab ASAN (address sanitizer) builds of firefox or chrome!

• I personally prefer heap libraries for fuzzing because they are faster but many
people also use sanitizers for fuzzing.

Detecting not crashing vulnerabilities

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Practice: Lection 10

Topic: Lection 10 –

Sanitizers

Duration: 5-10 min

Description: See different

sanitizers in action.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Use ASAN / MSAN with AFL:

• Cite from „notes_for_asan.txt“ from docs of AFL

„To compile with ASAN, set AFL_USE_ASAN=1 before calling

'make clean all'. The afl-gcc / afl-clang wrappers will

pick that up and add the appropriate flags.

Note that ASAN is incompatible with -static, so be

mindful of that.

(You can also use AFL_USE_MSAN=1 to enable MSAN

instead.)”

ASAN / MSAN

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Practice: Lection 11

Topic: Lection 11 –

DrMemory

Duration: 5 min

Description: See

DrMemory in action.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Change the heap implementation to check for dangling pointers AFTER a

free() operation! (similar to MemGC)

• Check all pointers in data section, heap and stack if they point into memory

• Check must only be performed one time for new queue entries

Detecting not crashing vulnerabilities

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

send_private_message

user2

content

delete_user

login

user2

view_messages

Free()

Detection here!

Use after free

© 2018 SEC Consult | All rights reserved

Overview: Areas which influence fuzzing results

Input filesize

MutatorsDetection rate

Fuzzer speed

Fork-server

Faster instrumentation code

Static vs. Dynamic

Instrumentation

In-memory fuzzing

No process switches

…

Page heap / Heap libs

Sanitizers (ASAN, MSAN,

SyzyASan, DrMemory, ..)

Dangling Pointer Check

Writeable Format Strings Check

…

AFL-tmin & AFL-cmin

Heat maps via

Taint Analysis and

Shadow Memory

…

Application aware mutators

Generated dictionaries

Append vs. Modify mode

Grammar-based mutators

Use of feedback from application

…

Fuzzer

Results

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Practice: Lection 12

Topic: Lection 12 – AFL-

cov

Duration: 5 min

Description: See how to

visualize AFL coverage.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

LibFuzzer

© 2018 SEC Consult | All rights reserved

LibFuzzer

• LibFuzzer – Similar concept to AFL but in-memory fuzzing

• Requires LLVM SanitizerCoverage + writing small fuzzer-functions

• LibFuzzer is more “a fuzzer for developers”

• AFL fuzzes the execution path of a binary (no modification required)

• LibFuzzer fuzzes the execution path of a specific function (minimal code
modifications required)

• Fuzz function1 which processes data format 1 ➔ Corpus 1

• Fuzz function2 which processes data format 2 ➔ Corpus 2

• AFL can also do in-memory fuzzing (persistent mode)

• I highly recommend this tutorial: http://tutorial.libfuzzer.info

• And this workshop: https://github.com/Dor1s/libfuzzer-workshop

• Our next labs are from this workshop!

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

http://tutorial.libfuzzer.info/
https://github.com/Dor1s/libfuzzer-workshop

© 2018 SEC Consult | All rights reserved

Practice: Lection 13

Topic: Lection 13 –
LibFuzzer simple example

Duration: 5 min

Description: Use
LibFuzzer in an simple
example.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Can you spot the vulnerability?

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

Attacker controlled ➔

This macro reads 2 bytes

from p and stores them in

payload

„p“ points to an attacker

controlled buffer

© 2018 SEC Consult | All rights reserved

Can you spot the vulnerability?

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

• This was Heartbleed from OpenSSL

Source: https://de.wikipedia.org/wiki/Heartbleed

© 2018 SEC Consult | All rights reserved

Can you spot the vulnerability?

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

Attacker controlled

Copies „payload“ (user supplied) bytes from

pl (= p = ssl input data) to „bp“ (output buffer)

Size of „pl“ is never checked!

© 2018 SEC Consult | All rights reserved

LibFuzzer

Source: http://tutorial.libfuzzer.info

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Practice: Lection 14

Topic: Lection 14 –
LibFuzzer Heartbleed.

Duration: 5 min

Description: Use
LibFuzzer to find
HeartBleed.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Practice: Lection 15

Topic: Lection 15 –
LibFuzzer C-ares

Duration: 5 min

Description: Use
LibFuzzer to find a bug in
C-ares.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Practice: Lection 16

Topic: Lection 16 –
LibFuzzer Woff

Duration: 5 min

Description: Use
LibFuzzer to find a bug in
Woff.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

DynamoRio

© 2018 SEC Consult | All rights reserved

• Dynamic runtime manipulation of instructions of a running application!

• Many default tools are shipped with these frameworks

• drrun.exe –t drcov -- calc.exe

• drrun.exe –t my_tool.dll -- calc.exe

• pin -t inscount.so -- /bin/ls

• Register callbacks, which are trigger at specific events (new basic block / instruction

which is moved into code cache, load of module, exit of process, …)

Dynamic Instrumentation Frameworks

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Dynamic Instrumentation Frameworks

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

• For transformation time callbacks can be registered

• Called only once if new code gets executed

• drmgr_register_bb_instrumentation_event()

• For execution time we have two possibilities

• Called every time the code is executed

• Clean calls: save full context (registers) and call a C function (slow)

• Inject assembler instructions (fast)

• Context not saved, tool writer must take care himself

• Registers can be “spilled” (can be used by own instructions without losing old state)

• DynamoRio takes care of selecting good registers & saving and restoring them

• Nudges can be send to the process & callbacks can react on them

• Example: Turn logging on after the application started

© 2018 SEC Consult | All rights reserved

DynamoRIO

Source: The DynamoRIO Dynamic Tool Platform, Derek Bruening, Google

Transformation time

Execution time

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Example: Start Adobe Reader, load PDF file, exit Adobe Reader, extract coverage data
(Processing 25 PDFs with one single CPU core)

• Runtime without DynamoRio: ~30-40 seconds

• BasicBlock coverage (no hit count): 105 seconds
• Instrumentation only during transformation into code cache (transformation time)

• BasicBlock coverage (hit count): 165 seconds
• Instrumentation on basic block level (execution time)

• Edge coverage (hit count): 246 seconds

• Instrumentation on basic block level (many instructions required to save and
restore required registers for instrumentation code) (execution time)

DynamoRIO

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• PIN is another dynamic instrumentation framework (older)

• Currently more people use PIN (➔ more examples are available)

• DynamoRio is noticeable faster than PIN

• But PIN is more reliable

• DynamoRio can’t start Encase Imager, PIN can

• DynamoRio can’t start CS GO, PIN can

• During client writing I noticed several strange behaviors of DynamoRio

DynamoRio vs PIN

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Demo Time!

Topic: Instrumentation of
Adobe Reader with
DynamoRio

Runtime: 2 min 31 sec

Description: Use
DynamoRio to extract code-
coverage of a closed-source
application using only a
simple command.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Demo Time!

Topic: Determine Adobe
Reader “PDF loaded”
breakpoint with coverage
analysis.

Runtime: 1 min 08 sec

Description: Log coverage
of “PDF open” action to get a
breakpoint address to detect
end of PDF loading.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Practice: Lection 17

Topic: Lection 17 – DrCov

Duration: 1 min

Description: Use DrCov

to extract coverage

information.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Practice: Lection 18

Topic: Lection 18 – Log
function calls.

Duration: 5 min

Description: Read a
sample DynamoRio client
code and execute it.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Practice: Lection 19

Topic: Lection 19 – Write a
DynamoRio client to log all
cmp values.

Duration: 15 min

Description: Log cmp
values and use them for
fuzzing.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

Windows Fuzzing

© 2018 SEC Consult | All rights reserved

• WinAFL - AFL for Windows developed by Ivan Fratric
• Download: https://github.com/ivanfratric/winafl

• Two modes:
• DynamoRio: Source code not required

• Can be used to modify closed-source applications at runtime ➔ Our focus today!

• Syzygy: Source code required
• Fuzzing Mimikatz➔ Demo 4 from https://sec-consult.com/en/blog/2017/11/the-art-of-fuzzing-slides-and-

demos/index.html

• ➔ WinAFL uses in-memory fuzzing and we therefore must specify a target function
which should be fuzzed

afl-fuzz.exe -i in -o out -D C:\work\winafl\DynamoRIO\bin64 -t 20000 --

-coverage_module gdiplus.dll -coverage_module WindowsCodecs.dll

-fuzz_iterations 5000 -target_module test_gdiplus.exe

-target_offset 0x1270 -nargs 2 -- test_gdiplus.exe @@

WinAFL

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

https://github.com/ivanfratric/winafl
https://sec-consult.com/en/blog/2017/11/the-art-of-fuzzing-slides-and-demos/index.html

© 2018 SEC Consult | All rights reserved

Demo Time!

Topic: Fuzzing mimikatz on
Windows with WinAFL

Runtime: 10 min 39 sec

Description: See the
WinAFL fuzzing process on
Windows of binaries with
source-code available in
action.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Fuzzing and exploiting mimikatz

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• AutoIt definition (https://www.autoitscript.com):

AutoIt v3 is a freeware BASIC-like scripting

language designed for automating the Windows GUI and

general scripting. It uses a combination of

simulated keystrokes, mouse movement and

window/control manipulation in order to automate

tasks …

AutoIt

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://www.autoitscript.com/

© 2018 SEC Consult | All rights reserved

AutoIt Demo Source Code

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Practice: Lection 20

Topic: Lection 20 - AutoIt

Runtime: 5 min

Description: Use AutoIt to

automate some GUI.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Demo Time!

Topic: Real-world EnCase
Imager Fuzzing (Vulnerability
found by SEC Consult
employee Wolfgang Ettlinger)

Runtime: 29 sec

Description: See real-world
fuzzing in action.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Exploitability of the vulnerability

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Another use case: Popup Killer

• During fuzzing applications often spawn error message➔ popup killer closes them

• Another implementation can be found in CERT Basic Fuzzing Framework (BFF)

Windows Setup files (C++ code to monitor for message box events)

AutoIt

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

GUI automation – Example HashCalc

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

Question 1:

What is the maximum MD5

fuzzing speed with GUI

automation?

Question 2:

How many MD5 hashes can

you calculate on a CPU per

second?

© 2018 SEC Consult | All rights reserved

• HashCalc.exe MD5 fuzzing

• GUI automation with AutoIt: ~3 exec / sec

• In-Memory with debugger: ~750 exec / sec

• In-Memory with DynamoRio (no instr.): ~170 000 exec / sec

GUI automation

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

Reverse Engineering Tricks
for Fuzzing

© 2018 SEC Consult | All rights reserved

• Important task when fuzzing with WinAFL ➔ Find a potential target function

to fuzz!

• How can we do this (as fast as possible) if source code is not available?

• This function must open, process and close the input file!

• Technique 1: Log CreateFile() and CloseFile()

• Simple solution: On 32-bit we can use Process Monitor and it’s stack traces

• API Monitor is another option

• DynamoRio / PIN script

How to find the target function

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Example: We now use our PE corpus to fuzz dumpbin from Visual Studio

• Dumpbin is internally just a wrapper to link.exe

How to find the target function

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Process Monitor to find CreateFile and CloseFile

How to find the target function

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Result:

How to find the target function

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Second CreateFile looks good ➔ CreateFileW

How to find the target function

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• And the call stack of the CloseFile():

How to find the target function

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Technique 2: Memory breakpoints on input data

• E.g.: fuzzing network packets or from stdin

• Set the breakpoint at recv() and when it triggers we are in the code which works with

the data

• Technique 3: Log every (internal) function call together with arguments

• After that search the log file for your input

• Can be implemented with DynamoRio / PIN (funcap is a debugger implementation for

this but it’s extremely slow)

• Hint: Log only cross-module calls to find easy-to-target exported library functions

How to find the target function

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Technique 4: Measure code coverage and subtract them

• Execute program twice, one time trigger the target behavior, one time not

• Extract both times code coverage (drrun –t drcov -- C:\applications.exe arg1 arg2)

• Use IDA Pro plugin lighting house to subtract the coverage ➔ Result is code

responsible for the target behavior

• Side note: You can also extract coverage from your input corpus and use lighting

house to detect code which you currently don’t reach!

• Demo 8 from https://sec-consult.com/en/blog/2017/11/the-art-of-fuzzing-slides-and-

demos/index.html

• Technique 5: Use a taint engine to follow inputs

• More on this later!

How to find the target function

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

https://sec-consult.com/en/blog/2017/11/the-art-of-fuzzing-slides-and-demos/index.html

© 2018 SEC Consult | All rights reserved

Demo Time!

Topic: Identification of target

function address of a closed-source

application (HashCalc).

Runtime: 10 min 15 sec

Description: Using reverse

engineering (breakpoints on function

level via funcap and DynamoRio with

LightHouse) to identify the target

function address.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Demo Time!

Topic: In-memory fuzzing of
HashCalc using a debugger.

Runtime: 4 min 21 sec

Description: Using the identified
addresses and WinAppDbg we
can write an in-memory fuzzer to
increase the fuzzing speed to 750
exec / sec!

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Demo Time!

Topic: In-memory fuzzing of
HashCalc using DynamoRio.

Runtime: 2 min 58 sec

Description: Using the identified
addresses and DynamoRio we
can write an in-memory fuzzer to
increase the fuzzing speed to

170 000 exec / sec!

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Practice: Lection 21

Topic: Lection 21 - WinAFL

GDI Fuzzing

Runtime: 10 min

Description: Using WinAFL to

fuzz GDI.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

GDI Fuzzing with WinAFL

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

• Use the recompiled GDI.exe binary (with /MT) / Install VC Redist 2010

• Debug:

• Fuzzing:

© 2018 SEC Consult | All rights reserved

GDI Fuzzing with WinAFL

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

Browser fuzzing

© 2018 SEC Consult | All rights reserved

• The discussed techniques should NOT be used to fuzz browsers (DOM, JS, CSS,

SVG, …)

• Reason: When fuzzing a browser you want to find a combination of JS / HTML /

… code which leads to a vulnerability. This is not a binary file format and therefore

the discussed techniques are inefficient

• However: If the browser parses an image, icon, audio, font, … file you can use the

techniques!

• It’s similar to the “chat” binary where AFL-style fuzzing was also inefficient

Browser Fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• For browsers you generate HTML / JS files with a grammar-based fuzzer.

• Example: Domato from Ivan Fratric (Google Project Zero)

Browser Fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Practice: Lection 22

Topic: Lection 22 - Domato

Runtime: 5 min

Description: Use Domato to

generate fuzzed HTML files.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Google P0 fuzzed major browsers in 2017

• https://googleprojectzero.blogspot.com/2017/09/the-great-dom-fuzz-off-of-

2017.html

• 100 000 000 iterations per browser with 10 seconds per run

• Chrome, Firefox and Safari with ASAN builds

• IE and Edge with Page Heap

• Cost: Approximately 1000 $

Browser Fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

https://googleprojectzero.blogspot.com/2017/09/the-great-dom-fuzz-off-of-2017.html

© 2018 SEC Consult | All rights reserved

• Results:

Browser Fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• On the Windows VM you can find the exploit for CVE-2011-2371 (Firefox Integer

Overflow – Array.reduceRight)

• A very good exploit to get started with browser exploitation

• Simple compared to other exploits, works very reliable on all Windows operating

systems

• Bypasses ASLR & DEP

• Does not crash the browser

Browser Fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

My research

© 2018 SEC Consult | All rights reserved

• My research builds on-top of the hard work other researchers shared with the public.
Without their awesome work all of my stuff would definitely not work!

• AFL by Michal Zalewski
• Simplest fuzzer to start on Linux and very efficient in finding bugs

• LibFuzzer from LLVM
• Use it when you have C/C++ code and can compile with clang (faster than AFL)

• Honggfuzz by Robert Swiecki
• Simpler to modify than AFL, useful when fuzzing network apps

• WinAFL by Ivan Fratric
• Use it if you want to fuzz Windows software with feedback (alternative: If you don’t want to use

coverage feedback you can try CERT Fuzzer, but I definitely recommend feedback-based fuzzing)

• Based on DynamoRio by Derek Bruening

On the shoulders of giants

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

I encountered some problems when fuzzing with WinAFL:

• Lack of a snapshot mechanism ➔ Just jump at the end of the function back to

the start without resetting the old memory state

• Heap, Stack, global variables, TEB and PEB may change… some data (e.g.:

network packets) may only be available in first iteration, access permission can

change, file positions can change or be closed, locks, semaphores, critical

sections, multi-threaded applications, ….

• Lots of stuff can go wrong here

Problems of WinAFL

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Example:

void target_fuzz_function(char *input, size_t len) {

crypto_func(input, len); // works with g_var1 & g_var2

free(g_var1);

g_var2->field123 = 567;

}

➔Second iteration works with the freed variable g_var1 (and modified g_var2

content)

➔We could tell the fuzzer to fuzz only “crypto_func”. But what if this function was

inlined? What if crypto_func also works with g_var3? If we assume closed source

applications and the target function is very big, it’s hard / time consuming to

manually find these dependencies! What if the compiler changed the order ?

Problems of WinAFL

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Example: If we start to fuzz link.exe with WinAFL with the identified address we see

in the log file:

Problems of WinAFL

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

I encountered some problems when fuzzing with WinAFL:

• Not 100% compatible with Page Heap because of in-memory fuzzing

• If data is not freed during the iteration, some checks are never performed!

• If a global variable is freed during the iteration, we introduce a double-free!

• If memory is allocated in the iteration, but not freed, we spray the heap which

means we have to restart the application after some thousand iterations

Problems of WinAFL

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Undetected by page heap:

Uint8_t *data = static_cast<uint8_t *>(Malloc(17));

data[-1] = 0x11; // no crash

data[17] = 0x11; // no crash

data[30] = 0x11; // no crash

// No free(data1)

• Windows requires 16-byte aligned heap pointers (on x64), therefore it can only use fill

patterns to detect 1 to 15 byte overflows (or negative ones); Fill patterns are just checked

at free()

• In-memory fuzzing often doesn’t reach the free because we go to the next iteration…

• Same applies for other heap allocation routines (new, RtlAllocateHeap, …)

PageHeap

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

PageHeap

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

• Undetected by page heap:

© 2018 SEC Consult | All rights reserved

• Execution with page heap enabled:

• Inside WinDbg:

➔We don‘t see an exception although page heap is enabled!

➔Our fuzzer would also miss it!

PageHeap

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• AFL injects here

• WinAFL injects here

• Where it makes sense

Feedback based fuzzing

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

So I started to develop my own fuzzer to solve the problems

1. Full logic is injected into the target application ➔ No inter-process communication
required, mutations are performed in-memory, file-reads are cached, full multi-core support

2. Snapshot mechanism which creates process snapshots and can quickly (!) restore the
snapshot (this works with my own heap implementation which doesn’t have the problems
of page heap)

3. Taint Engine to reduce number of bytes which must be fuzzed

4. Playing around with new ideas from academic papers ➔ I try to implement and test all
of them

SEC Consult Fuzzer

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Taint Analysis

• Taint Analysis:

• With a PIN / DynamoRio tool follow data-flow by tainting memory

• Assign one bit to every byte in RAM, 0… not tainted, 1 … tainted

• Store per tainted byte extra information (e.g. on which input bytes it depends)

• Move taint status around with every instruction (e.g. mov rax, [memory] ➔ If [memory] is

tainted rax will also be tainted; xor rax, rax ➔ Rax will be untainted) by injecting code with

DynamoRio

• Taint Analysis Tools:

• Libdft, Triton, bap, panda, manticore, Own DynamoRio client, …

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Combine Call-Graph with Taint-Analysis

➔We can write a DynamoRio/PIN tool which tracks calls and taint status

➔Automatically detect target fuzz function

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

func1
func1

func4func2

func6 func7 func8 func9
access

access

access

access

access

access

func5

func3

Target

Function

to fuzz

_start

Open input file

Close input file

© 2018 SEC Consult | All rights reserved

Fuzzing with taint analysis

1. Typically byte-modifications are uniform distributed over the input file

2. With taint analysis we can distribute it uniform over the tainted instructions!

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

Input file

(5 byte)

Byte 1

Byte 2

Byte 3

Byte 4

20 Mutations

20 Mutations

20 Mutations

20 Mutations

Instruction X1: Read byte 2

Instruction X2: Read byte 1,2,3,4

Instruction X3: Read byte 2

Instruction X4: Read byte 1,2

Instruction X5: Read byte 2,3

Byte 1 read by 2 instructions

Byte 2 read by 5 instructions

Byte 3 read by 2 instructions

Byte 4 read by 1 instruction

Byte 5 read by 0 instructions

2/10 = 20%

5/10 = 50%

2/10 = 20%

1/10 = 10%

0/10 = 0%

20 Mutations

50 Mutations

20 Mutations

10 Mutations

Maybe don‘t fuzz this at all

X2 is maybe a

copy / search function

Byte 5
0 Mutations20 Mutations

© 2018 SEC Consult | All rights reserved

Fuzzing vs. Symbolic execution

➔ Fuzzing all bytes:

➔ Input file is for example 1000 Byte (1 KB)

➔ 256 possible Byte values for 1000 Byte ➔ 256 000 potential executions (in our case ~2600)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Fuzzing vs. Symbolic execution

➔ Symbolic execution (simplified):

➔ Two branches, one with value == 0x11 and one with value != 0x11

➔ Solution for == 0x11: user_input[0x0a] := (0x11 ^ 0xaa) + 0x30 = 0xeb

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

user_input[0x0a]

user_input[0x0a] – 0x30

(user_input[0x0a] – 0x30) ^ 0xaa

((user_input[0x0a] – 0x30) ^ 0xaa) == 0x11

© 2018 SEC Consult | All rights reserved

Fuzzing vs. Symbolic execution

➔ Taint Analysis in Fuzzing

➔ Query for conditional jumps (dep. On our input), where all inputs take the same path

➔ Taint Engine returns input byte 0x0a ➔ Just fuzz this byte!

➔ Check the cmp operand size ➔ If it’s 1 or 2 bytes use fuzzing, if it’s 4 or 8 b. use symbolic execution

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

This jnz depends on tainted byte input[0x0a]

Taint al because [edi+0x0a] depends on input[0x0a]

All our inputs take this path!

© 2018 SEC Consult | All rights reserved

Demo Time!

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

• Demo: SEC Consult Fuzzer

• Fuzzer is still early alpha!

• Release: In some months

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

Rules for fuzzing

© 2018 SEC Consult | All rights reserved

1. Start fuzzing!

2. Start with simple fuzzing, during fuzzing add more logic to the next fuzzer version

3. Use Code/Edge Coverage Feedback

4. Create a good input corpus (via download, feedback or grammar)

5. Minimize the number of sample files and the file size

6. Use sanitizers / heap libraries during fuzzing (not for corpus generation)

7. Modify the mutation engine to fit your input data

8. Skip the “initialization code” during fuzzing (fork-server, persistent mode, …)

9. Use wordlists to get a better code coverage

10. Instrument only the code which should be tested

11. Don’t fix checksums inside your Fuzzer, remove them from the target application (faster)

12. Start fuzzing!

Fuzzing rules

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

• Reddit:

• https://www.reddit.com/r/fuzzing/

• Most fuzzing related blog posts are published here

• Rode0day:

• https://rode0day.mit.edu/

• A continuous bug finding competition

• DARPA Challenge set for Linux/Windows/MacOS

• https://github.com/trailofbits/cb-multios

Where to get more information

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://www.reddit.com/r/fuzzing/
https://rode0day.mit.edu/
https://github.com/trailofbits/cb-multios

© 2018 SEC Consult | All rights reserved

Thank you for your attention!

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

For any further questions contact me

René Freingruber
@ReneFreingruber

r.freingruber@sec-consult.com

+43 676 840 301 749

SEC Consult Unternehmensberatung GmbH

Mooslackengasse 17

1190 Vienna, AUSTRIA

www.sec-consult.com

https://twitter.com/renefreingruber?lang=de
mailto:r.freingruber@sec-consult.com
http://www.sec-consult.com/

© 2018 SEC Consult | All rights reserved

SEC Consult in your Region.

RUSSIA

CJCS Security Monitor

5th Donskoy proyezd, 15, Bldg. 6

119334, Moscow

Tel +7 495 662 1414

Email info@securitymonitor.ru

THAILAND

SEC Consult (Thailand) Co.,Ltd.

29/1 Piyaplace Langsuan Building 16th Floor, 16B

Soi Langsuan, Ploen Chit Road

Lumpini, Patumwan | Bangkok 10330

Email office-vilnius@sec-consult.com

LITHUANIA

UAB Critical Security, a SEC Consult company

Sauletekio al. 15-311

10224 Vilnius

Tel +370 5 2195535

Email office-vilnius@sec-consult.com

SINGAPORE

SEC Consult Singapore PTE. LTD

4 Battery Road

#25-01 Bank of China Building

Singapore (049908)

Email office-singapore@sec-consult.com

CANADA

i-SEC Consult Inc.

100 René-Lévesque West, Suite 2500

Montréal (Quebec) H3B 5C9

Email office-montreal@sec-consult.com

AUSTRIA (HQ)

SEC Consult Unternehmensberatung GmbH

Mooslackengasse 17

1190 Vienna

Tel +43 1 890 30 43 0

Fax +43 1 890 30 43 15

Email office@sec-consult.com

GERMANY

SEC Consult Deutschland

Unternehmensberatung GmbH

Ullsteinstraße 118, Turm B/8 Stock

12109 Berlin

Tel +49 30 30807283

Email office-berlin@sec-consult.com

SWITZERLAND

SEC Consult (Schweiz) AG

Turbinenstrasse 28

8005 Zürich

Tel +41 44 271 777 0

Fax +43 1 890 30 43 15

Email office-zurich@sec-consult.com

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

