A e =

% 3 SEC Consult 8

Finding security vulnerabilities
with modern fuzzing techniques | o

/o A <&/

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Introduction

 Rene Freingruber (r.freingruber@sec-consult.com)
o Twitter: @ReneFreingruber
« BSc @ TU Vienna, Currently MSc @ Technikum Vienna

« Senior Security Consultant at SEC Consult
 Red Team, Reverse Engineering, Exploit development, Fuzzing
» Trainer: Secure C/C++, Reverse Engineering and Red Teaming
* Previous talks:
« 2014: Bypassing EMET
« 31C3, DeepSec, ZeroNights, RuxCon, ToorCon and NorthSec
« 2015: Bypassing Application Whitelisting
« CanSecWest, DeepSec, Hacktivity, NorthSec, IT-SeCX, BSides Vienna and QuBit
« 2016: Hacking companies via firewalls
« DeepSec, BSides Vienna, DSS ITSEC and IT-SeCX (lightning talks at recon.eu and hack.lu)
« Since 2017 fuzzing talks
« DefCamp, Heise devSec, IT-SeCX, BSides Vienna, RuhrSec

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

mailto:r.freingruber@sec-consult.com
https://twitter.com/ReneFreingruber

A
Or I ONT A0S OR FOR YOUR INFORMATIC

-~ Vilnius | LT
Berlin| DE
Montreal | cA \ \ .~ _— Moscow | RU

. "8
Zurich | cH =% A5

. .,

We are hlrlng' Vlenna(HQ)N\"\ -

Wiener Neustadt | T .
Founded 2002 (15+ years consulting) - \

Strong customer base in Europe and Asia

Singapore | sG

100+ Security experts Bangkok | TH

120+ certifications

500+ Security audits per year @ SEC Consult Offices

SEC Consult Clients

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

A
1@?
>

ADVISOR FOR YOUR INFORMATION SECURITY

Some rules

« Ask anything anytime!
* My english is not the best — please use simple words ©

« Tell me if I'm too fast!
« Tell me if there is anything you don‘t understand!
« Tell meifit's too easy /too hard!

« Contact me:
« E-Mail: r.freingruber@sec-consult.com
o Twitter: @ReneFreingruber

... Tell me if you want to have a break ©

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

mailto:r.freingruber@sec-consult.com
https://twitter.com/ReneFreingruber

Demos

« Some demos building on great stuff from others!
* LibFuzzer Tutorial (From Google and Workshop from Dorls, @Dor3s)
« Seccon 2016 CTF chat binary
* FuzzGoat (from fuzzstatiOn)
« Of course all the great fuzzers like AFL, LibFuzzer, WinAFL, honggfuzz, ...

« Many demos just require to type in commands...
* It's the nature of the topic (we don‘t want to implement everything our self)
« | want to use the full time to learn you as much as possible (the basics!)

* If you want “open examples” just try the learned stuff at home with some
applications! (if you have gquestions drop me a mail or write on twitter)

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Fuzzing

Definition of fuzzing (source Wikipedia):

Fuzzing or fuzz testing 1s an automated software testing
technique that involves providing invalid, unexpected, or
random data as inputs to a computer program. The program is
then monitored for exceptions such as crashes, or failing
bullt-in code assertions or for finding potential memory
leaks.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Why do we need Fuzzing?

Microsoft Security Development Lifecycle (SDL) Process

2. REQUIREMENTS

1. Core Security 2. Establish Security 5. Establish Design
Training Requirements Requirements
3. Create Quality 6. Perform Attack
Gates/Bug Bars Surface Analysis/
Reduction

4. Perform Security 7. Use Threat

and Privacy Risk Modeling
Assessments

Source: https://www.microsoft.com/en-us/SDL/process/verification.aspx

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

3. DESIGN

> 1. IMPLEMENTATION > 5. VERIFICATION 6. RELEASE

8. Use Ag 11. Perform Dynamic 14. Create an Incident Execute Inciden
Tools Analysis Response Plan Response Plan

0. DeprecateWnsafe RPREl{el 1 NTrs4 15. Conduct Final
Functions Testing Security Review

10. Perform Stati 13. Conduct Attack 16. Certify Release
Analysis Surface Review and Archive

| also recommend fuzzing during implementation

Example: You finished a complex task and you are not sure if
it behaves correctly and is secure

=>» Start a fuzzer over night / the weekend = Check corpus

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

https://www.microsoft.com/en-us/SDL/process/verification.aspx

Why do we need Fuzzing?

SDL Phase 4 Security Requirements

Where input to file parsing code could have crossed a trust boundary, file fuzzing
must be performed on that code. [...]

« An Optimized set of templates must be used. Template optimization is based on
the maximum amount of code coverage of the parser with the minimum number of
templates. Optimized templates have been shown to double fuzzing effectiveness
In studies. A minimum of 500,000 iterations, and have fuzzed at least 250,000
iterations since the last bug found/fixed that meets the SDL Bug Bar.

Source: https://msdn.microsoft.com/en-us/library/windows/desktop/cc307418.aspx

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

https://msdn.microsoft.com/en-us/library/windows/desktop/cc307418.aspx

 Advantages:

* Very fast (in most cases much faster than manual source code review)

* You don’t have to pay a human, only the power consumption of a computer
* Itruns 24 hours/ 7 days, a human works only 8 hours / 5 days

« Scalable (want to find more bugs? = Start 100 fuzzing machines instead of 1)

« Disadvantages:

« Deep bugs (lots of pre-conditions) are hard to find
« Typically you can’t find business logic bugs

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Types of Fuzzing

« Grammar-based Fuzzing :

Idea: Implement the file format / protocol inside your fuzzer

Example: “at offset 4 is an unsigned dword, at offset 10 is a checksum, at offset 14 is a null-
terminated string, at offset 20 a type field, ...”

Covers everything which you defined (but maybe forgets corner cases which you didn’t think

of)

After the (long) initial work, the fuzzer covers lots of corner cases very fast
Examples: Peach, Domato, Boofuzz, Sulley, Spike, ...

 Feedback-based Fuzzing:

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Let the fuzzer learn the file format itself = No initial work required (fast results)

However, learning the format can take a long time and maybe some checks could not be
learned by the fuzzer

=>» If we build better feedback-based fuzzers it has no (or just small) drawbacks
Examples: AFL, WIinAFL, LibFuzzer, Honggfuzz, ...

Side note: Use this technique for binary inputs. For “interactive” inputs (e.g.: JavaScript / DOM
in browser or shell-like software which listens on a port) this technique is only partially useful.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Feedback-based Fuzzing / -

Coverage-guided Fuzzing
S

Feedback based fuzzing

=» Consider this code: Fuzzer queue:

Input 1: 00 00 00 00 00 00
if (input_buffer[2] == ©x55) {

printf("ex55 case\n");

}
else {

printf("Default case\n");
}

if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");
}

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Feedback based fuzzing

=» Fuzz input 1: 00 00 00 00 00 00 Fuzzer queue:

Input 1: 00 00 00 00 00 00
if (input_buffer[2] == ©x55) {

printf("ex55 case\n");

}
else {

printf("Default case\n");
}

if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");
}

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Feedback based fuzzing

=» Fuzz input 1: 01 00 00 00 00 00 Fuzzer queue:

Input 1: 00 00 00 00 00 00
if (input_buffer[2] == ©x55) {

printf("ex55 case\n");

}
else {

printf("Default case\n");
}

if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");
}

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Feedback based fuzzing

=» Fuzz input 1: 02 00 00 00 00 00 Fuzzer queue:

Input 1: 00 00 00 00 00 00
if (input_buffer[2] == ©x55) {

printf("ex55 case\n");

}
else {

printf("Default case\n");
}

if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");
}

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Feedback based fuzzing

=» Fuzz input 1: FF 00 00 00 00 00 Fuzzer queue:

Input 1: 00 00 00 00 00 00
if (input_buffer[2] == ©x55) {

printf("ex55 case\n");

}
else {

printf("Default case\n");
}

if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");
}

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Feedback based fuzzing

=» Fuzz input 1: 00 01 00 00 00 00 Fuzzer queue:

Input 1: 00 00 00 00 00 00
if (input_buffer[2] == ©x55) {

printf("ex55 case\n");

}
else {

printf("Default case\n");
}

if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");
}

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Feedback based fuzzing

=» Fuzz input 1: 00 02 00 00 00 00 Fuzzer queue:

Input 1: 00 00 00 00 00 00
if (input_buffer[2] == ©x55) {

printf("ex55 case\n");

}
else {

printf("Default case\n");
}

if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");
}

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Feedback based fuzzing

=» Fuzz input 1: 00 FF 00 00 00 00 Fuzzer queue:

Input 1: 00 00 00 00 00 00
if (input_buffer[2] == ©x55) {

printf("ex55 case\n");

}
else {

printf("Default case\n");
}

if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");
}

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Feedback based fuzzing

=» Fuzz input 1: 00 00 01 00 00 00 Fuzzer queue:

Input 1: 00 00 00 00 00 00
if (input_buffer[2] == ©x55) {

printf("ex55 case\n");

}
else {

printf("Default case\n");
}

if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");
}

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Feedback based fuzzing

=» Fuzz input 1: 00 00 54 00 00 00 Fuzzer queue:

Input 1: 00 00 00 00 00 00
if (input_buffer[2] == ©x55) {

printf("ex55 case\n");

}
else {

printf("Default case\n");
}

if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");
}

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Feedback based fuzzing

=» Fuzz input 1: 00 00 55 00 00 00 Fuzzer queue:

: - - Input 1: 00 00 00 00 00 00
if (input_buffer[2] == ©x55 _

T e) Input 2: 00 00 55 00 00 00
}
else {

printf("Default case\n");
;

if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Feedback based fuzzing

=» Fuzz input 1: 00 00 56 00 00 00 Fuzzer queue:

: - - Input 1: 00 00 00 00 00 00

if (input_buffer[2] == ©x55 _
DrINtT("oxSS Case\n’); Input 2: 00 00 55 00 00 00

}
else {

printf("Default case\n");
}

if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Feedback based fuzzing

=» Fuzz input 1: 00 00 FF 00 00 00 Fuzzer queue:

: - - Input 1: 00 00 00 00 00 00

if (input_buffer[2] == ©x55 _
DrINtT("oxSS Case\n’); Input 2: 00 00 55 00 00 00

}
else {

printf("Default case\n");
}

if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Feedback based fuzzing

=» Fuzz input 1: 00 00 00 A9 00 00 Fuzzer queue:

: - - Input 1: 00 00 00 00 00 00

if (input_buffer[2] == ©x55 _
DrINtT("oxSS Case\n’); Input 2: 00 00 55 00 00 00

}
else {

printf("Default case\n");
}

if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Feedback based fuzzing

=» Fuzz input 1: 00 00 00 AA 00 00 Fuzzer queue:
: - > Input 1: 00 00 00 00 00 00
if (input_buffer[2] == ©x55 _
printf("Ox55 case\n"); Input 2: 00 00 55 00 00 00
} Input 3: 00 00 00 AA 00 00

else {
printf("Default case\n");
}
if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Feedback based fuzzing

=» Fuzz input 1: 00 00 00 AB 00 00 Fuzzer queue:
: - > Input 1: 00 00 00 00 00 00
if (input_buffer[2] == ©x55 _
printf("Ox55 case\n"); Input 2: 00 00 55 00 00 00
} Input 3: 00 00 00 AA 00 00

else {
printf("Default case\n");
}
if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Feedback based fuzzing

=» Fuzz input 1: 00 00 00 00 00 FF Fuzzer queue:
: - > Input 1: 00 00 00 00 00 00
if (input_buffer[2] == ©x55 _
printf("Ox55 case\n"); Input 2: 00 00 55 00 00 00
} Input 3: 00 00 00 AA 00 00

else {
printf("Default case\n");
}
if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Feedback based fuzzing

=» Fuzz input 2: 01 00 55 00 00 00 Fuzzer queue:
put-1-00-00-00-00-00-00
if (input_buffer[2] == ©x55) { _
printf("ex55 case\n"); Input 2: 00 00 55 00 00 00
} Input 3: 00 00 00 AA 00 00
else {

printf("Default case\n");
;
if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Feedback based fuzzing

=» Fuzz input 2: 02 00 55 00 00 00 Fuzzer queue:
put-1-00-00-00-00-00-00
if (input_buffer[2] == ©x55) { _
printf("ex55 case\n"); Input 2: 00 00 55 00 00 00
} Input 3: 00 00 00 AA 00 00
else {

printf("Default case\n");
;
if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Feedback based fuzzing

=» Fuzz input 2: 00 00 55 AA 00 00 Fuzzer queue:
b o 00 Do D0 00 00
if (input_buffer[2] == ©x55) { _
printf("ex55 case\n"); Input 2: 00 00 55 00 00 00
} Input 3: 00 00 00 AA 00 00
else { <no new entry because we
printf("Default case\n");
) already saw that coveage>

if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Feedback based fuzzing

=» Fuzz input 2: 00 00 55 00 00 FF Fuzzer queue:
put-1-00-00-00-00-00-00
if (input_buffer[2] == ©x55) { _
printf("ex55 case\n"); Input 2: 00 00 55 00 00 00
} Input 3: 00 00 00 AA 00 00
else {

printf("Default case\n");
;
if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Feedback based fuzzing

=» Fuzz input 3: 01 00 00 AA 00 00 Fuzzer queue:

e

if (input_buffer[2] == ©x55) { _
printf("0x55 case\n"); put2-00-00-55-00-00-00
} Input 3: 00 00 00 AA 00 00

else {
printf("Default case\n");
}
if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");
}

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Feedback based fuzzing

=» Fuzz input 3: 00 00 00 AA FF 00

if (input_buffer[2] == ©x55) {
printf("ex55 case\n");

}
else {

printf("Default case\n");
}

if (input_buffer[3] oxaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {

printf("Vulnerability triggered!\n");

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Fuzzer queue:

e R
put2:-00-00-55-00-00-00
Input 3: 00 00 00 AA 00 00
Input 4: 00 00 00 AAFF 00

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Feedback based fuzzing

=» Fuzz input 3: 00 00 00 AA 00 FF Fuzzer queue:
put-1:-006-00-00-00-00-00
if (input_buffer[2] == ©x55) { _
printf("Ox55 case\n"); put-2-00-00-55-00-00-00
} Input 3: 00 00 00 AA 00 00

else { .
printf("Default case\n"); Input 4: 00 00 00 AA FF 00
}

if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Feedback based fuzzing

=» Fuzz input 4: 01 00 00 AAFF 00 Fuzzer queue:
put1-00-00-00-00-00-00

if (input_buffer[2] == ©x55) { |

printf("ex55 case\n"); put2:-00-00-55-00-00-00
) Input-3:-00-00-00-AA00-00
else { .

printf("Default case\n"); Input 4: 00 00 00 AA FF 00
}

if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");

}

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Feedback based fuzzing

=» Fuzz input 4: 00 00 00 AAFF CC

if (input_buffer[2] == ©x55) {
printf("ex55 case\n");

}
else {

printf("Default case\n");
}

if (input_buffer[3] == ©xaa) {
if (input_buffer[4] == oxff) {
if (input_buffer[5] == @xcc) {
printf("Vulnerability triggered!\n");

Fuzzer queue:

Mg 00 00 00 00 00 00
hput2-00-00-55-00-00-00
put3-00-00-00-AA-00-00

Input 4: 00 00 00 AA FF 00

= \ulnerability found!

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Popular Fuzzers

s’,

American Fuzzy Lop - AFL

e One of the most famous file-format fuzzers
* Developed by Michal Zalewski

* Instruments application during compile time (GCC or LLVM)
« Binary-only targets can be emulated / instrumented with gemu
» Forks exist for PIN, DynamoRio, Dyninst, syzygy, IntelPT, ... (more on this later!)
« Simple to use! (start fuzzing in under 1 minute!)
« Good designed! (very fast & good heuristics)

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

 Consider this code (x = argc):

if(x = 3) { user-VirtualBox# gcc -o test test.c
pUtS{'TEStlHW'}‘ user-VirtualBox# ./test 1
1 else {

Test?

puts("Test2\n"); Test3
} . T user-VirtualBox#
puts("Test3\n"); Testl

return ©;
Test3

4
Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public m
L

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

[rbptuar_#4],

 Basic Blocks: _
short loc_H40055B

edi, offset s : "Test1l\n"
_puts loc_HOOSSB: : "Test2\n”

short loc_400565 mouy edi, offset aTest2
call _puts

loc_400565: ; Test3\n”

mov edi, offset aTest3
call _puts loc_400576:

oy eax, mouv eax,
jmp short locret_40057B

retn
main endp

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2018 SEC Consult | All rights reserved
ADVISOR FOR YOUR INFORMATION SECURITY

« Just use afl-gcc instead of gcc...

user-VirtualBox# afl-gcc -o
2.35b by <lcamtuf@google.com=>

2.35b by <lcamtuf@google.com>
(64-bit, non-hardened mode, ratio 100%).

[+] Instrumented 6 locations
user-VirtualBox# ./test2 1
Test?2

ADVISOR FOR YOUR INFORMATION SECURITY

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

« Result:

=

loc_400TED

argu = rsi

dword ptr [rax

Store old rsp, [rsp-98h]

) [r spt +uar_AB0], rdx X = rdi
register values [rsp+ +uar_98], rcx nop dword ptr [rax
[rsp+ +par_90], rax lea rsp, [rsp-]
. FCx maow [Fﬂp+ +uar_ A0, rdx
Instrumentation __afl_maybe_log . [Fep+0ABh+var_98], rex
~ax, [rspt +yar_90] mou [rsp+ +uar_90], rax
Restore Old rox . [r- -..r;.+ +I_I,_=”"_'E|E;] mow Fey

call __afl_maybe_log

mou ~ax, [rsp+ +yar_90]

mou rex, [rspt +uar_98]

mou rdx, [rsp+ +yar_A0]

lea rsp, [rspt]

mou edi, offset aTestl ; "Testi\n”
call _puts

jmp loc_HB80TIE

register values rdx, [rsp+ +yar_Ae]
= |:':|) [rF -'-.r:: +

edi, offset s ; "Test2\n"
_puts

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

American Fuzzy Lop - AFL

AFL-FUZZ, GZIP BINARY £ T

- %A

2,000 EXECS/SEC, I CORE, § HOURS .

-

SNS— = Without instrumentation just the

LEVEL I TEST CASES LAy

LOCOVERARLE VIA BLIND IU22ING -

= first level will be discovered (or it

- 420

Jdaw
- 2N n
o W
o
would take an extremely long time
o4 a0
- AW an
e
o
00T
o o
R
- Man
of v 0 <
N CRLULE)
%
- 4 an
weo-n
« Wan
N
- Wan
LR
o
an
o mam
p
- W
i
. o wie . W@ - « mo
o L)
Fas e o LEVEL 6 TEST CASES
M
— “ Wi « Wi | .
NN
- W4 - 5 -
o anam 4 wa - - e
— = ARan - AN - - s
o s . aq
- e - N — - MM
20850) "
- 1. - -
e
o LEVEL 2 TEST CASES

DERIVED BY MECENG THE PUZIER
- NG WITH TEAY CAVES [SOLATED 0%
FLIVOUS LEVEL

4 anam - w1

o A - g L Source:
18 “HEL httpi//icamtuf.coredump.cx/afi_

{aa gzip.png

gif

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Practice: Lection 1

Topic: Lection 1 — Simple
AFL fuzzing

Duration: 5 —-10 min

Description: Try AFL In
action with a simple and
small target.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

american fuzzy lop 2.49b (readelf)

42 days, 19 hrs, 27 min, 41 sec
0 days, 1 hrs, 45 min, 10 sec

5 days, 19 hrs, 58 min, 31 sec
1 days, 16 hrs, 58 min, 37 sec

0.39% / 18.87%
4.30 bits/tuple
depth

i

bitflip 1/1 ' 2220

880/106k (0.83%) 3431 (23.

4.54G 1286 (25 unique)
ﬁ338fsec 25.5k (224 unique)
path geometry

1418/474M, 557/474M
57/13.2M, 57/13.6M
19/548M, 182/375M
T.EN, 359/22eM, 374/425M
U;Q, 1061 /659M
_;Jp 0/0
.13M, 78.13%

y
Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public SEc Consult
© 2018 SEC Consult | All rights reserved 4

ADVISOR FOR YOUR INFORMATION SECURITY

uHL;mumfn
Oy M Oy OOy 0D D

I:'IJ lad

I T T '--.
S |I‘“\ oo

[~ =«

Input Corpus

« We can either start fuzzing with an empty input folder or with downloaded /
generated input files

 Empty file:
* Let AFL identify the complete format (unknown target binaries)
 Downside: Can be very slow

 Downloaded sample files:
» Much faster because AFL doesn‘t have to find the file format structure itself
« Bing API to crawl the web (Hint: Don‘t use DNS of your provider ...)
« Other good sources: Unit-tests, bug report pages, ...
* Problem: Many sample files execute the same code =» Corpus Distillation

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

« Example: Let’'s say we want to fuzz LIEF (Library to Instrument Executable
Formats from Quarkslab) with PE files

« Our real goal: Generate a good PE-corpus which we can use for fuzzing
AntiVirus engines (therefore we first fuzz different open source PE libraries)

« Side note: LIEF is a very powerful PE library and my first choice in PE libraries!
That’s why | have chosen it as target here!

« Step 1: Get possible input files:
* Write a python script to grab all small .exe / .dll / .sys / ... files from a
workstation (execute it on Windows XP, Vista, Win7, Win8.1, Win10, ...)

« Add public available corpus files: | found additional 2149 files on the internet
* Result: Many thousand files

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

« Step 2: Recompile application with afl-gcc

* | modified the c++ “pe_reader” example to catch all exceptions (otherwise AFL
would incorrectly identify thrown exceptions as crashes)

« Export CC & CXX and call cmake / configure

git clone https://github.com/lief-project/LIEF.git
cd LIEF

mkdir build;cd build

export CC=afl-gcc

export CXX=afl-g++

cmake —-DPYTHON VERSION=2.7

make

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

« Step 3: Minimize the files to a small corpus (Corpus Distillation)

* Optional: Do everything on a RAM disk (e.g.: /dev/shm):
mkdir /ramdisk

mount -t tmpfs -o size=4G tmpfs /ramdisk

« Example: The 2149 public files can be reduced to 377 files

'ramdisk#]afl-cmin -i input dir/ -o input after cmin/ —— ./pe reader cpp = exceptions handled @@
corpus minimiza i i '

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

« Step 4: Minimize file size of the files in the corpus

* Not very efficient in the case of PE files (byte removal / modification lead to invalid
checksum =» different executed code = AFL-tmin can’t reduce it)

« For example: In total the filesize of all 377 files together was just reduced by 400
KB

./afl-tmin -1 testcase file -o testcase out file
—-- /path/to/tested/program [...program's cmdline...] @@

« Step 5: Start fuzzing
afl-fuzz -i input after tmin -o output/ -M master -- ./pe reader Q@

afl-fuzz -i input after tmin -o output/ -S slavel -- ./pe reader Q@

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

american fuzzy lop 2.49b (slavel)

days, © hrs, 17 min, 9 sec sycle . : Side note:
days, 0 hrs, 0 min, 26 sec 18 This are In
days, 0 hrs, 39 min, 47 sec]34 i
‘ ' ' reality only 2
days, 21 hrs, 10 min, 52 sec i y y
map coverage (not exploita.)
326 (6.02%) 6.63% / 22.81% bugs in the
0 (0.00%) 3.83 bits/tuple code.

"0gress indings in depth)
havoc 525 (9.69%) (LIEF ships

192/384 (50.00%) 943 (17. 4[]°]| with LibFuzzer

104M T01k (734)
315.2/sec 1822 (113 unqu }
egy ylelds path geometrsy

n/a, n/a 9

n/a, n/a 16

n/a, n/a 0

n/a, n/a 2149
n/a, n/a 2900
1799/34.7M, 1084/63.7TM 100.00%
13.12%/5.92M, n/a

4
Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public SEc Consult
© 2018 SEC Consult | All rights reserved 4

ADVISOR FOR YOUR INFORMATION SECURITY

scripts!)

American Fuzzy Lop - AFL

Steps for fuzzing with AFL:

1. Remove input files with same functinality:
Hint: Call it after tmin again (cmin is a heuristic)
./afl-cmin -1 testcase dir -o testcase out dir
-- /path/to/tested/program [...program's cmdline...]

2. Reduce file size of input files:
./afl-tmin —-i testcase file -o testcase out file
—- /path/to/tested/program [...program's cmdline...]

3. Start fuzzing:
./afl-fuzz -i testcase dir -o findings dir
-- /path/to/tested/program [...program's cmdline...] @@

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Real World example: CVE-2009-0385

* Real world example
 CVE-2009-0385

* Vulnerability from 2009 in FFMPEG
* Vulnerabllity in parsing .4xm files

« More information (on exploit development) can be found in “A bug hunter’s
diary” chapter 5

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

* Input .4xm file (with video & audio stream):

72 6B 28 00 0O 0O 00 0O OO 0O OO OO 00 00 00 imeGatep@1s01n01a02_2.wav.strk(.......vuuuun
00 00 4C 49 53 54 AC BS 11 00 4D 4F 49 4C 49 LIST....MOVILI
09 AD 8A 4C 3A DC FB 19 BV 08 B7 D8 11 DB 21
4D 18 9D BF B9 DC 72 13 74 D5 D4 4A B5 B4 OC

.fffmpeg g -1 ../../input files/original.4xm
FFmpeg version UNKNOWN, Copyright (c) 2000-2009 Fabrice Bellard, et al.

configuration: --prefix=/home/rfr/Desktop/C_Schulung/examples/13.Fuzzing/1.FFmpeg/FFmpeg_compiled
libavutil 49.12. 0 [/ 49.12. ©

libavcodec 52.10. ©® [/ 52.10. ©
libavformat 52.23. 1 f 52.23. 1
libavdevice 52. 1. 0 / 52. 1. @
built on Jul 19 2016 15:18:05, gcc: 4.7.2
Input #0, 4xm, from '../../input_filesforiginal.4xm':
Duration: ©0:80:13.20, start: 0.000000, bitrate: 704 kb/s
Stream #0.0: Video: 4xm, rgb565, 640x486, 15.00 tb(r)
Stream #0.1: Audio: pcm_si16le, 22050 Hz, stereo, s16, 705 kb/s
At least one output file must be specified

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

e Dumb fuzzer:

S python dumb_fuzz.
Crash with flipped
Crash with flipped
Crash with flipped
Crash with flipped
Crash with flipped

Crash with flipped

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public
© 2018 SEC Consult | All rights reserved

Original:

6B 28 00
00 4C 49

AD 8A 4C

00 00 00 00
53 54 AC B9
3A DC FB 19

imeGatep01s01n01a02_2.wav.strk(
LIST....MOVILI
l-L:i-l-l-l-i-l-l-l-i-l-ll

18 9D BF

B9 DC 72 13

Fuzzer found crash:

6B 28 00
00 4C 49
AD 8A 4C
18 9D BF

00 00 FF FF
53 54 AC B9
3A DC FB 19
B9 DC 72 13

imeGatepB1s01n01a02_2.wav.strk(
LIST....MOVILI
l-I_:l-l-l-l-l-l-l-l-l-l-ll

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

« Verify the crash in the debugger:

(gdb) r -1 /home/rfr/Desktop/C_Schulung/examples/13.Fuzzing/1.FFmpeg/input_files/test.4xm
Starting program: [home/rfr/Desktop/C_Schulung/examples/13.Fuzzing/1.FFmpeg/FFmpeg compile
FFmpeg version UNKNOWN, Copyright (c) 2000-2009 Fabrice Bellard, et al.

configuration: --prefix=/home/rfr/Desktop/C_Schulung/examples/13.Fuzzing/1.FFmpeg/FFmpeg

libavutil 49.12. 0 [/ 49.12. ©

libavcodec 52.10. © / 52.10. @

libavformat 52.23. 1 / 52.23. 1

libavdevice 52. 1. © / 52. 1. ©

built on Jul 19 2016 15:18:05, gcc: 4.7.2

Program received signal SIGSEGV, Segmentation fault.

0x080ab5b3 in fourxm_read header (s=0x88d8330, ap=0xbffffe3e) at libavformat/4xm.c:178
178 fourxm->tracks[current_track].adpcm = AV_RL32(&header[i1 + 12]);
gdb) x /11 Seip

> 0x80ab5b3 <fourxm_read header+691>: mov DWORD PTR [eax+0x10],ebp

gdb) p /x Seax

2 = Oxffffffec

gdb) p /x Sebp

3 = O0x0

A
Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public SEC Consult
© 2018 SEC Consult | All rights reserved L

ADVISOR FOR YOUR INFORMATION SECURITY

« Attacker has a write-4 vulnerability (destination and value controlled):

06 AA AA 00 1imeGatepf1s01n01a02_2.wav.strk(

54 AC B9 LIST....MOVILI
DE FB 19 21 ‘.l-l-l- l-l-l-L:l-l-l-l-l-l-l-l-l-l--I

DC 72 13
11 E1 22

Program received signal SIGSEGV, Segmentation fault.
@x080ab5b3 in fourxm_read header (s=0x88d8330, ap=0xbffffe3e) at libavformat/4xm.c:178
178 fourxm-=tracks[current_track].adpcm = AV_RL32(&header[i + 12]);
(gdb) x f11i Seip
=> OxB80ab5b3 <fourxm_read header+691>: mov DWORD PTR [eax+8x107,ebp
(gdb) n /x Seax
$6 = Ox55555548
(gdb) p /x Sebp
Oxbbbbbbbb

y
Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public SEC Consult
© 2018 SEC Consult | All rights reserved [)

ADVISOR FOR YOUR INFORMATION SECURITY

Now assume we don’t have a valid 4xm file:

« Before modification:

imeGatep01s01n01a02_2.wav.SEtrk(

l-i-i-i-l-i-fi-l-i-i-i-l-i-i-i-l-i-i-i-l-i-.rul-i-iiiiLISTii‘iiMDuILI
STitiiFRAMifrm 5 i-L:i-i-i-l-i-i-i-l-i-i--l

#
l-i-i-i-l-i-iwl-i-ii-[i-ui-l-i-i-i-ii?aiiiaMi‘ii-l-i-ri-ti-i-]gi-ii-

imeGatep®1s01n01a02_2.wav SECA(
LIST....MOVILI

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public
© 2018 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

 =» The dumb fuzzer can’t find the vulnerability anymore!

thon dumb_f .
ot with flipped Many other crashes...

with flipped ili
R But not the real vulnerability at

with flipped offset Oxlae

with flipped

with flipped

with flipped Reason: In error case the
with Tlipped

wiER ;{meg code dereferences the pointer
wi ippe “ . ..
with mﬁﬁzd to the ,strk” chunk which is in

with flipped ;
SLtHE i nned this case NULL

with flipped
with flipped
with flipped
with flipped
with flipped
with flipped
with flipped
with flipped
with flipped
with flipped
with flipped

A

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

Practice: Lection 2

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Lection 2 — Real
World Fuzzing FFMPEG
with AFL

Duration: 10 — 15 min

Description: Try to fuzz
FFMPEG with AFL

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

american fuzzy lop 2.1%b (ffmpeg)

® days, 18 hrs, 52 min, 48 sec
® days, ® hrs, @ min, 25 sec

® days, 1 hrs, 15 min, 58 sec
® days, ® hrs, 12 min, 5 sec

205 (17.39%) 5205 (7.94%)
14 (1.19%) 2.39 bits/tuple

havoc 239 (20.27%)
34.6k/160k (21.64%) 376 (31.89%)
19.8M

373.4/sec 19.6k (73 unique)

91/5.51M, 30/5.51M, 21/5.51M 4
1/689k, 3/7463, 7/8669

50/383k, 10/27.5k, 6/11.5k

7/35.8k, 217203k, 34/196k

e/0, 0/0, 5/48.2k

893/1.55M, 0/0

26.75%/43.3k, 98.99%

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2018 SEC Consult | All rights reserved

SEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

« AFL input with invalid 4xm file (strk chunk changed to str))

POOEO0eEEEAAvErkD...000000000000000000000000
000000. .00. .00000000000000000000000000000000
0000000000000000000000000CA22A20000000000000

GEEILEEEEEEEEEEEEEL R d e ¢
000000000000000000...."0..0...LISTOOOOMOVILI

* AFL still finds the vulnerability!
 Level 1 identifies correct “strk” chunk

* Level 2 based on level 1 output AFL finds the vulnerability (triggered by Oxfffffftf)

30 30 30 30
30 30 30 30
30 30 73 74
00 60 20 00

30 30 30
30 30 30
6B 28 00
00 4C 49

30 30 30
30 30 3f
00 00 FF
53 54 30

30 30 30
iA_30 30
FF 00 00O
30 4D 4F

30 30 30
30 30 30
00 30 30
49 4C 49

000000. .00..00000000000000000000000000000000
00
POAGHNOEROANAO00000NA00000 Istrk(

000000000000000000...."0..0...LISTOOOOMOVILI

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

Crash Triage

« Some hints on analyzing exploitability / root cause:

* First command to execute when the application crashes is:
o X /2i $rip
« X... examine = print something at the given location ($rip in our case)
« S$rip ... instruction pointer =» the current instruction
« /2i ... print 2 times data interpreted as instruction

 Now we see which instruction resulted in a crash and the next step is to
understand why it crashed

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Crash Triage

« Examples:
* Mov dword ptr [rcx+0x20], eax

* Mov rbx, gword ptr [rax]

« Every time you see [and] it means that we read/write from RAM memory =» In most
cases the address inside the brackets is therefore wrong and resulted in a crash. So we
would analyze rcx and rax in the above outputs: p /x $rex ; p /x $rax

* In many cases you can control rcx or rax (e.g: it contains 0x414141..) then you maybe
have an arbitrary read or write. In other cases you may have a relative read/write and in
other cases it contains a fixed address which can’t be accessed (which can indicate a
use-after-free bug)

* In many other cases rcx or rax is just zero which resulted in a null pointer exception
(because our input didn’t initialized it); This is in most cases not exploitable

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Crash Triage

 Examples:
e => 0x4141414141414141: Cannot access memory at address
0x4141414141414141

« This means $rip points to 0x4141... and therefore we had most likely a stack based
buffer overflow and overwrote the return address on the stack

e ret

« Sometimes you directly crash at the “ret” instruction (which is basically a “pop rip”) if the
return address is invalid. This for example is the case in ARM gdb.

* 1inc eax
» No obvious reason how this instruction could crash. This often occurs if $rip points to a
memory region which is not marked as executable (DEP/NX protection). Therefore “inc

eax’ is stored in such a region. To verify you can type “shell”, then “pidof
<applicationName” and then check: cat /proc/<PID>maps if the memory range is

executable or not.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Crash Triage

 Examples:
e leave

» Alittle bit more tricky: leave is the same as “mov esp, ebp ; pop ebp”. The move
instruction cannot crash (if it's in an executable memory range), therefore “pop ebp”
must crash. Pop ebp reads from the stack (where ESP points to)

* <vfprintf> mov dword ptr [rax], rod

« Since the crash occurred in a standard function (vfprintf) it often helps to check the stack
backtrace with “backtrace”. Check the last function call in the application = Arguments
to the library function are very likely incorrect.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Crash Triage

« We use CrashWalk from Ben Nagy for Crash Triage (crash analysis)
« https://github.com/bnagy/crashwalk
« Cwitriage --root afl _output —afl
 Cwdump ./crashwalk.db
* Cwifind <crash hash>

« GDB /WinDbg Plugin !exploitable

« Another great possibility on Windows is the Bugld tool by SkyLined
» https://github.com/SkyLined/Bugld

« Symbolic execution can also help in triage
* For example: SymGDB, Triton, PONCE, Moflow tools

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

https://github.com/bnagy/crashwalk
https://github.com/SkyLined/BugId

Practice: Lection 3

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Lection 3 —
FuzzGoat and Crash
Triage

Duration: 5-10 min

Description: Learn to
perform crash triage.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Edge vs. BasicBlock Coverage

* |Instrumentation tracks edge coverage, injected code at every basic block:

cur location = <compille time random value>;
bitmap|[(cur location © prev location) % BITMAP SIZE]++;

prev location = cur location >> 1;
=>» AFL can distinguish between

. A->B->C->D->E (tuples: AB, BC, CD, DE)
. A->B->D->C->E (tuples: AB, BD, DC, CE)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

[rbptuar_#4],

 Basic Blocks: _
short loc_H40055B

edi, offset s : "Test1l\n"
_puts loc_HOOSSB: : "Test2\n”

short loc_400565 mouy edi, offset aTest2
call _puts

loc_400565: ; Test3\n”

mov edi, offset aTest3
call _puts loc_400576:

oy eax, mouv eax,
jmp short locret_40057B

retn
main endp

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2018 SEC Consult | All rights reserved
ADVISOR FOR YOUR INFORMATION SECURITY

Edge vs. BasicBlock Coverage

* |Instrumentation tracks edge coverage, injected code at every basic block:

cur location = <compille time random value>;
bitmap|[(cur location © prev location) % BITMAP SIZE]++;
prev location = cur location >> 1;

=>» AFL can distinguish between
- A->B->C->D->E (tuples: AB, BC, CD, DE)
« A->B->D->C->E (tuples: AB, BD, DC, CE)

=> Without shifting A->B and B->A are indistinguishable

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Edge vs. BasicBlock Coverage

« AFL receives after every iteration a “coverage_map”.
« Every byte in the map represents a hitcount for an edge (or basic block)

Hitcounts are translated to bucket indexes to mark a unique edge + hitcount combination

with one bit!
// Hitcount bucket: [0] [1] [2] [3] [4-7] [8-15] [16-31] [32-127] [128+]
// Bucket Value (%) 1 2 4 8 16 32 64 128
// One at bit offset - % 1 2 3 4 5 6 7

=>» A global coverage map stores information about the already seen coverage by doing
an AND after every iteration. If one iteration has at one bit a 1 where the global coverage
map stores a 0 new behavior is detected = Very fast check for new behavior!

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Edge vs. BasicBlock Coverage

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Consider the following code; Our input file has Oxaa at offset 10, 0x00 at all other positions

char *p;
[l ...
if(input[l0] == Oxaz) {
p = &(input + 20);
}
[/l ...
if (input[4] == 0xbb) {
printf("Input string: %s\n", p):
}

BasicBlock Coverage: Vulnerability (uninitialized variable) will not be found (or very late)

Edge Coverage: Vulnerability will be found because input will be mutated to not contain Oxaa
at offset 10 (This input will be added to the queue)

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Some public fuzzing numbers

Some public fuzzing numbers

 Example: Talk by Charlie Miller from 2010 ,Babysitting an Army of Monkeys"
 Fuzzed Adobe Reader, PPT, OpenOffice, Preview

« Strategy: Dumb fuzzing
« Download many input files (PDF 80 000 files)
« Minimal corpus of input files with valgrind (PDF 1515 files)
 Measure CPU to know when file parsing ended
* Only change bytes (no adding / removing)
 Simple fuzzerin 5 LoC

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Fuzzer:

numwrites=random.randrange(math.ceil((float(len(buf)) / FuzzFactor)))+1for j in
range(numwrites):.rbyte = random.randrange(256)rn =
random.randrange(len(buf))buf[rn] = "%c"%(rbyte);

numwrites=random.randrange(math.ceil((float(len(buf)) / FuzzFactor)))+1for j in
range(numwrites):rbyte = random.randrange(256)rn =
random.randrange(len(buf))buf[rn] = "%c"%(rbyte);

Source: Charlie Miller ,Babysitting an Army of Monkeys*

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Results:
« 3 months fuzzing
e 7 Million Iterations

Crashes with unique EIP:

Source: Charlie Miller ,,Babysitting an Army of Monkeys*

Reader ;
Preview

OpenOffice e Crashes per unique crash
PowerPoint

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2018 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

Some public fuzzing numbers

Other numbers from Jaanus Kaap:

» https://nordictestingdays.eu/files/files/jaanus _kaap fuzzing.pdf

« Code coverage for minset calculation (no edge coverage because of speed)
« PDF => initial set 400 000 files =» Corpus 1217 files

« DOC => initial set 400 000 files =» Corpus 1319 files

« DOCX => initial set 400 000 files =» Corpus 2222 files

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

https://nordictestingdays.eu/files/files/jaanus_kaap_fuzzing.pdf

Some public fuzzing numbers

Google fuzzed Adobe Flash in 2011

,What does corpus distillation look like at Google scale? Turns out we have a
large index of the web, so we cranked through 20 terabytes of SWEF file
downloads followed by 1 week of run time on 2,000 CPU cores to calculate the
minimal set of about 20,000 files. Finally, those same 2,000 cores plus 3 more
weeks of runtime were put to good work mutating the files in the minimal set
(bitflipping, etc.) and generating crash cases. “

The initial run of the ongoing effort resulted in about 400 unigue crash signatures,
which were logged as 106 individual security bugs following Adobe's initial triage.

e Source: https://security.gooqgleblog.com/2011/08/fuzzing-at-scale.html

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

https://security.googleblog.com/2011/08/fuzzing-at-scale.html

Some public fuzzing numbers

Google fuzzed the DOM of major browsers in 2017:

https://qooqgleprojectzero.blogspot.co.at/2017/09/the-great-dom-fuzz-off-of-2017.html

We tested 5 browsers with the highest market share: Google Chrome, Mozilla Firefox_ Internet Explorer,
Microsoft Edge and Apple Safan. We gave each browser approximately 100 000 000 iterations with the
fuzzer and recorded the crashes. (If we fuzzed some browsers for longer than 100.000.000 terations, only
the bugs found within this number of iterations were counted in the results.) Running this number of
iterations would take too long on a single machine and thus requires fuzzing at scale, but it is still well within
the pay range of a determined attacker. For reference. it can be done for about $1k on Google Compute
Engine given the smallest possible VI size, preemptable ViVs (which | think work well for fuzzing jobs as
they don't need to be up all the time)/and 10 seconds par run.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

https://googleprojectzero.blogspot.co.at/2017/09/the-great-dom-fuzz-off-of-2017.html

Some public fuzzing numbers

Google fuzzed the DOM of major browsers in 2017:

Vendor Browser Engine Number of Project Zero Bug IDs
Bugs

Google Chrome Blink 2 994 1024

Mozilla Firefox Gecko 4** 1130, 1155, 1160, 1185

Microsoft | Internet Trident 4 1011, 1076, 1118, 1233

Explorer

Microsoft | Edge EdgeHtml |6 1011, 1254 1255, 1264, 1301,
1309

Apple Safan WebKit 17 999 1038, 1044 1080, 1082,
1087, 1090, 1097, 1105, 1114,
1241 1242 1243 1244 1246,
1249 1250

Source: https://googleprojectzero.blogspot.co.at/2017/09/the-great-dom-fuzz-off-of-2017.html

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

https://googleprojectzero.blogspot.co.at/2017/09/the-great-dom-fuzz-off-of-2017.html

Some public fuzzing numbers

Google created OSS-Fuzz — Continuous Fuzzing for Open Source

Software

https://opensource.qooqgleblog.com/2017/05/oss-fuzz-five-months-later-and.html

Five months ago, we announced 055-Fuzz, Google's effort to help make open source software
more secure and stable. Since then, our robot army has been working hard at fuzzing, processing
10 trillion test inputs a day. Thanks to the efforts of the open source community who have
integrated a total of 47 projects, we've found over 1,000 bugs (264 of which are potential security

vulnerabilities).

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

* heap buffer overflows
¢ global buffer overflows
» stack buffer overflows
 use after frees

» uninitialized memory
» stack overflows

* timeouts

*ooms

* leaks

e ubsan

» unknown crashes

» other (e.g. assertions)

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html

Methods to extract coverage feedback -

Methods to measure code-coverage

2. Emulation of binary (e.g. with gemu)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

user@user-VirtualBox:~/test$ AFL NO ARITH=1 AFL PRELOAD=/home/user/test/libdislo
cator.so afl-fuzz -0 -x wordlist -i input/ -o output/ -- ./chat

american fuzzy lop 2.51b (chat)

0 days, 0@ hrs, 0 min, 17 sec

0 days, 0 hrs, 0 min, 1 sec 20
none seen yet 0
none seen yet 0

1 (5.00%) 0.09% / 0.30%
0 (0.00%) 1.27 bits/tuple

havoc 12 (60.00%)
152/768 (19.79%) 16 (80.00%)
33.3k 0 (0 unique)
1902/sec 0 (0 unique)

3/32, 1/30, 0/26 2

0/4, 0/2, 0/0 19

6/0, 0/0, 0/0 12
e/22, /0, 6/0 19
0/40, 2/60, 0/0 n/a
13/32.8k, 8/0 100.00%

n/a, 0.00%
309%

y
Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public SEc Consult
© 2018 SEC Consult | All rights reserved 4

ADVISOR FOR YOUR INFORMATION SECURITY

Practice: Lection 5

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Lection 5 — AFL
Qemu mode

Duration: 2-5 min

Description: Use Qemu
mode to fuzz closed source
binaries. Compare execution
speed.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

AFL Qemu mode

* Blogpost from 21-09-2018: Improving AFL’s gemu mode performance
« From Andrea, a BSc student at University of Padova!
« https://abiondo.me/2018/09/21/improving-afl-gemu-mode/
« His AFL fork: https://github.com/abiondo/afl
 Performance increase of 3x-4x times!

« Basicidea: AFL disables “block chaining” in QEMU to also trace direct jumps
(with chaining it would not make the callback to log the block).

« Block chaining is important for performance, the patch from Andrea modifies the
code in a way that “block chaining” can again be enabled and code gets inserted
(without callbacks) =» Better performance

« Moreover he added code to “cache block chains” between forked childs!

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

https://abiondo.me/2018/09/21/improving-afl-qemu-mode/
https://github.com/abiondo/afl

Methods to measure code-coverage

3. Writing own debugger and set breakpoints on every basicblock (slow, but useful
INn some situations)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Code-Coverage via Breakpoints

 Disadvantage:

* It's very slow

« Statically setting breakpoints can speedup the process, but it's still
slow because of the debugger process switches

* Only applicable if we remove a breakpoint after the first hit = We
only measure code-coverage (without a hit-count), edge-coverage
not possible or extremely slow

» On-disk files are modified (statically), which can be detected with
checksums (e.g. Adobe Reader .api files)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Code-Coverage via Breakpoints

 Advantage:

« Minset calculation

» Detection if a new file has new code-coverage is very fast (native
runtime) because we statically set breakpoints for unexplored code
and run the application without a debugger

 If it crashes we know it hit one of our breakpoints and therefore
contains unexplored code

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Methods to measure code-coverage

4. Dynamic instrumentation of compiled application (no source code required,;
tools: DynamoRio, PIN, Valgrind, Frida, ...)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Methods to measure code-coverage

5. Static instrumentation via static binary rewriting (Talos fork of AFL which uses
Dyninst framework — AFL-dyninst, should be fastest possibility if source code is
not available but it's not 100% reliable and currently Linux only); WIinAFL in
syzygy mode is very useful on Windows if source-code is available!

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Methods to measure code-coverage

6. Use of hardware features
« IntelPT (Processor Tracing); available since 6 Intel-Core generation (~2015)

* WindowsiIntelPT (from Talos) or KAFL

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Areas which influence fuzzing results

Fuzzer
Results

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public
© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Areas which influence fuzzing results

Fuzzer speed

Fuzzer
Results

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public
© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Fuzzer Speed

1. Use a RAM Disk

2. Remove slow API calls

3. Fork Server (AFL’'s Fork Server was designed by Jann Horn)
4. Deferred Fork Server

5. Persistent Mode (in-memory fuzzing)

6. Prevent process switches (between target application and the Fuzzer) by injecting the Fuzzer
code into the target process

7. Moadify the input in-memory instead of on-disk

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

] user@user-VirtualBox:~/test$ AFL NO ARITH=1 AFL PRELOAD=/home/user/test/libdislo
el e Y= oV s Yl cator.so afl-fuzz -0 -x wordlist -i input/ -o output/ -- ./chat

american fuzzy lop 2.51b (chat)

0 days, O hrs, 0 min, 17 sec
0 days, O hrs, O min, 1 sec
none seen yet

none seen yet

1 (5.00%) 0.09% / 0.30%

0 (0.00%) 1.27 bits/tuple

havoc 12 (60.00%)
152/768 (19.79%) 16 (80.00%)
33.3k @ (0 unique)
1902/sec 0 (0 unique)

3/32, 1/30, 0/26 2

0/4, /2, 0/0
0/0, 0/0, 0/0
0/22, /0, 0/0
0/40, 2/60, 0/0
13/32.8k, 0/0
n/a, 0.00%

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public
© 2018 SEC Consult | All rights reserved

19

12

19

n/a
100.00%

309%

SEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

user@user-VirtualBox:~/test$ AFL NO FORKSRV=1 AFL NO ARITH=1 AFL PRELOAD=/home/user/test/libdislo
W|thout Fork Server- cator.so afl-fuzz -x wordlist -Q -1 1nput/ -o output/ -- ./chat

american fuzzy lop 2.51b (chat)

0 days, @ hrs, 1 min, @ sec
0 days, O hrs, @ min, 7 sec
none seen yet
none seen yet

0 (0.00%) 0.20% / 0.27%
0 (0.00%) 1.20 bits/tuple

havoc 1 (8.33%)
6026/16.4k (36.78%) 10 (83.33%)
6244 0 (0 unique)
103.4/sec 0 (0 unique)

3/16, 1/15, 0/13 2

0/2, 0/1, 8/0 12

/0, 0/0, 6/0 1

/9, 0/0, 6/0 11
0/20, 2/30, 0/0 n/a
0/0, 0/0 100.00%

n/a, 0.00%
209%

y
Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public SEc Consult
© 2018 SEC Consult | All rights reserved 4

ADVISOR FOR YOUR INFORMATION SECURITY

Areas which influence fuzzing results

Input filesize

Fuzzer
Results

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public
© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Input file size

 The input file size is extremely important!

« Smaller files
« Have a higher likelihood to change the correct bit / byte during fuzzing
» Are faster processed by deterministic fuzzing
» Are faster loaded by the target application

« AFL ships with two utilities
* AFL-cmin: Reduce number of files with same functionality

« AFL-tmin: Reduce file size of an input file
« Uses a “fuzzer” approach and heuristics
* Runtime depends on file size
* Problems with file offsets

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Input file size

« Example: Fuzzing mimikatz

 Initial memory dump: 27 004 528 Byte
 Memory dump which | fuzzed: 2 234 Byte

= I’'m approximately 12 000 times faster with this setup...

* You would need 12 000 CPU cores to get the same result in the same time as my
fuzzing setup with one CPU core

« Or with the same number of CPU cores you need 12 000 days (~33 years) to get the
same result as | within one day

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public N I
©4 SEC Consult

© 2018 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public N I
©4 SEC Consult

© 2018 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

See below link for in-depth discussion how | fuzzed mimikatz with WinAFL.:

-

X mimikatz 2.1.1 x86 (oe.e0)

C:\Users\normalUser\Desktophtest mimikatz\real mimikatz>mimikatz.exe

Pid 2740 - — :
%ﬂ e JHHHE . Imimikatz 2.1.1 (x86) built on Aug 13 2017 17:27:38
RSl HH TR H La Vie, H L Hmour
5 commed AR I
el Hit \ / ## Benjamin DELPY ‘gentilkiwi’ [benjamin@gentilkiwi.com)
Hodlosd | EIEGIRVIRL N http://blog.gentilkiwi.com/mimikatz {oe.eo)
ModLoad: il with 21 modules = = =/
ModLoad:
HodLoad: L .. .
et lliminikatz # sekurlsa::minidump exploit.dmp
atraaellSwitch to MINIDUMP : "exploit.dmp’
odLoad :
HodLioad : Lo
ellIninikatz # sekurlsa::logonpasswords
raesaeslOpening @ ‘exploit.dmp’ file for minidump. ..
HodLoad ; | -
HodLoad:
HodLoad:
HodLioad :
HodLoad:
ModLoad:
(abd fa0): Access wiolation — code 0000005 (11l second chance 111) E
22200000000 ~he=02b406be ecx=00000004 =dx=00000000 esi=0010fd7c edi=00&bfa2@ 3
|E&p=41414141 e=p=0010fd44 =bp=0010£d450 iopl=0 nv up =21 pl zr na pe nc
SpE—— 53— [) -0022 £=-003b g=-0000 =f1-00010246
41414141 77 ???i
4 Inr [
[0 000> |

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

4

ADVISOR FOR YOUR INFORMATION SECURITY

https://www.sec-consult.com/en/blog/2017/09/hack-the-hacker-fuzzing-mimikatz-on-windows-with-winafl-heatmaps-0day/index.html

AFL Qemu mode

« Example: Niklas B (@ niklasb) fuzzed map files in Counter-Strike Global
Offensive and found lots of bugs/vulns with AFL Qemu mode!

« https://phoenhex.re/2018-08-26/csqo-fuzzing-bsp
* You should definitely read the blog post!

 Important decisions to mention
 He fuzzed the Linux binaries (with Qemu mode)
 He fuzzed the server (command line) and not the 3D game client

 He wrote a script to reduce input file size from 300 KB to 16 KB

« Cite from the blog post: “Input file size matters a lot. By going down from 300KB to
16KB | gained at least a factor of 5 in performance. Probably even smaller would be
even better.”

« Initial runtime per iteration was 15+ seconds =» He wrote a custom wrapper which
just calls the required functions =» ~50 exec / sec per thread

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

https://twitter.com/_niklasb
https://phoenhex.re/2018-08-26/csgo-fuzzing-bsp

american fuzzy lop 2.52b (fuzzer2)

21 days, 15 hrs, 19 min,

11 sec

0@ days, © hrs, 28 min, 25 sec
@ days, @ hrs, 7 min, 57 sec

11 days, 11 hrs, 53 min,

890* (9.80%)
0 (0.00%)

havoc
49/76 (64.47%)
35.9M

n/a, n/a, n/a

n/a, n/a, n/a

n/a, n/a, n/a

n/a, n/a, n/a

n/a, n/a, n/a
1295/5.43M, 1750/15.1M
1.75%/15.2M, n/a

47 sec

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

229
9084

171

11.75% / 22.07%
4.87 bits/tuple

792 (8.72%)
1458 (16.05%)

2.03M (1058 unique)
7

0

ADVISOR FOR YOUR INFORMATION SECURITY

https://phoenhex.re/2018-08-26/csgo-fuzzing-bsp

Areas which influence fuzzing results

Fuzzer
Results

Mutators

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public
© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

AFL Mutation

 AFL performs deterministic, random, and dictionary based mutations
« AFL has a very good deterministic mutation algorithms

« Deterministic mutation strategies:

« Bitflips
» single, two, or four bits in a row
» Byte flips

» single, two, or four bytes in a row
« Simple arithmetics
* single, two, or four bytes
« additions/subtractions in both endians performed
* Known integers
« overwrite values with interesting integers (-1, 256, 1024, etc.)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

AFL Mutation

« Random mutation strategies performed for an input file
after deterministic mutations are exhausted.

« Random mutation strategies:

e Stacked tweaks
» performs randomly multiple deterministic mutations
« clone/remove part of file

« Test case splicing

» splices two distinct input files at random locations and joins
them

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Magic Values

 Consider Lection 6 with the following code:

magicValue = *(uint64 t *)data;
if(magicValue == Oxdeadbeef13371337) {
printf("Found magic value\n");
*crash ptr = Oxdeafbeef; // Crash here

} else {
printf("No magic value\n");
}

* Question: Can AFL identify this bug?

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Practice: Lection 6

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Lection 6 — Magic
Values

Duration: 5-10 min

Description: See the

Impact of magic values in
fuzzing.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Magic Values

« Circumventing Fuzzing Roadblocks with Compiler Transformation.
« Enforce “Compiler Deoptimization” with LLVM compiler passes.
« https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-

compiler-transformations/

if (input == Oxabadldea) {
/* terribly buggy code */

} else { VS.
/* secure code */

}

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

if (input >> 24 == Oxab){
if ((input & 0xff0000) >> 16 == Oxad) {
if ((input & 0xff00) >> 8 == 0x1d) {
if ((input & 0xff) == Oxea) {
/* terrible code */
goto end;
}
}
}
}

/* good code */

end:

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/

LibTokenCap

« With LD _PRELOAD function implementations can be replaced for dynamically
loaded libraries

« Just compile a library containing a function with the name of the target function
which behavior you want to change

« LD _PRELOAD=/path/to/your/library.so ./target_application
« With AFL you can use AFL_PRELOAD-=... afl-fuzz ... -- ./target_application

* Preeny contains other useful examples (especially for CTFs)
* https://qithub.com/zardus/preeny
« Defork: Remove fork()
* Desleep / Dealarm / Deptrace / Desrand: Often useful for CTFs
« Hint: Replace network function to read from files instead =» Fuzz it with AFL

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

https://github.com/zardus/preeny

LibTokenCap

 LibTokenCap memcmp example:
Log the token

Only read-only
#undef memcmp
int memcmp(const void*/meml, const void* mem3{ size t len) {

if (tokencap is ro(meml)) tokencap dump(meml, len, 0);
if tokencap is ro(mem2 tokencap dump(mem2, len, 0);

unsigned char cl = *(const char*)meml, c2 = *(const char*)mem2;
if (cl !'= c2) return (cl >c2) ?2 1 : -1;

meml++; mem2++;

return 0;
}l Original memcmp implementation

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Practice: Lection 7

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Lection 7 —
LibTokenCap

Duration: 5-10 min

Description: See
LibTokenCap in action.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Areas which influence fuzzing results

Fuzzer
Results

Detection rate

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public
© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

SECCON Chat CTF Binary

Task:

Go to lection 9 (skip lection 8 for the moment), copy
the ,chat” binary and try to identify security
vulnerabilities by playing with the binary.

Can you spot the vulnerability?
Please don‘t read the solution file yet!

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Detecting not crashing vulnerabllities

=» Did someone detect a crash in the binary?
=» What do you think: how many vulnerabilities are in this binary?

=>» Other real world example: Heartbleed is a read buffer overflow and does not lead
to a crash...

=» We (the Fuzzer) need a way to detect such flaws / vulnerabilities!

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Heap Overflow Detection

Page (4096 byte), read- & write-able

Meta Meta

Data Heap Data 1 Data Heap Data 2

—
Heap Overflow

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Heap Overflow Detection

Page (4096 byte)
NOT read- & write-able

Meta

: Heap Data 1
Unused (special pattern) Data

—
Heap Overflow

Page (4096 byte)
NOT read- & write-able
Meta

: Heap Data 2
Unused (special pattern) Data P

_

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Use-After-Free Detection

Page (4096 byte)
NOT read- & write-able

Meta

: Heap Data 1
Unused (special pattern) Data

_

FREE

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Use-After-Free Detection

Page (4096 byte) Page (4096 byte)
NOT read- & write-able NOT read- & write-able

Meta

Data Heap Data 1

Access attempt
Access attempt

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Heap Library

e On Linux: LibDislocator (shipped with AFL)
* Replaces the heap allocator to detect heap corruptions
» Works also against closed source applications

 On Windows: Page heap with Application Verifier

« Own heap allocator which checks after free() all memory locations for a dangling
pointer!
« Detect Use-After-Free at free and not at use step
» Concept similar to MemGC protection from Edge

« AFL HARDEN=1 make (Fortify Source & Stack Cookies)

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Heap Library

 Libdislocator

/* We will also store buffer length and a canary below the actual buffer, so
let's add 8 bytes for that. */

ret = mmap (NULL, (! PG COUNT (len + ©)) * PAGE SIZE, PROT READ | PROT WRITE,

MAFP PRIVATE | MA ' J) ;

if (ret == (void*)-1) ({ One extra page
if (hard fail) FATAL("mmap() failed on alloc (0OM?)"); which is not RW
DEBUGF ("mmap () failed on alloc (OOM?)");
return NULL;

}

/* Set PROT NONE on the last page. */

if (mprotect(ret + PG COUNT(len + ©) * PAGE SIZE, PAGE SIZE, PROT NONE))
FATAL ("mprotect () failed when allocating memorvy") ;

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Practice: Lection 8

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Lection 8 —
LibDislocator

Duration: 20 min

Description: See
LibDislocator in action.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

user@user-VirtualBox:~/test$ EDTPRELOAD=/home/user/test/Libdistocator.so ./chat
Simple Chat Service

1 : Sign Up 2 : Sign In

0 : Exit

menu > 1

name > 3
Success!
enu > 2

ame > a
ello, a!
Service Menu
: Show TimelLine 2 : Show DM 3 : Show UserslList
: Send PublicMessage 5 : Send DirectMessage
: Remove PublicMessage 7 : Change UserName
: Sign Out
enu >> 7/
ame >> abc
Speicherzugriffsfehler (Speicherabzug geschrieben

4
Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public SEC Consult
© 2018 SEC Consult | All rights reserved 4

ADVISOR FOR YOUR INFORMATION SECURITY

« Radamsa is a very powerful input mutator
« |f you don't want to write a mutator yourself, just use radamsa!

user-VirtualBox# echo "testlinl23%nbla‘

echo "testl\nl23\nbla\

user-VirtualBox# echo "testl\nl23\nbla\
test1BabbBOG13
%2

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2018 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

https://github.com/aoh/radamsa

 Problem of radamsa: External program execution is slow (no library support)
« Already submitted by others as issue: https://github.com/aoch/radamsal/issues/28

« Example: SECCON CTF fuzzer for the chat binary

« Test 1: Before every execution we mutate the input with a call to radamsa
* Result: Execution speed is ~17 executions per second

« Test 2: Mutate input with python (no radamsa at all)
* Result: Execution speed is ~740 executions per second

« =» Always create multiple output files (e.g.: 100 or 1000) or use IP:Port output

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

https://github.com/aoh/radamsa/issues/28

« Testcases as input:

testl.txt

e
LM
~+
|'T:l

D w D
M 0o

LN I—I"
~+
|'T:l

regl
userds

Login

userl

send private message

userz2
Content of
lLogout

test2.txt
register
users3
login
users3

delete user

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2018 SEC Consult | All rights reserved

test3.txt
register
userd
login
userd
view messages
lLogout

ADVISOR FOR YOUR INFORMATION SECURITY

« Often seen wrong use of radamsa: FA

T
T

user-VirtualBox# ./radamsa testl.txt -0 mutatedl.t
user-VirtualBox# ./radamsa test2.txt -0 mutated?

.
user-VirtualBox# ./radamsa test3.txt -0 mutated3.txt

lLogin
users3
Only variations of login
the current input file user3

deletete user

A
Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public M
[)

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

« Correctinvocation: Always generate multiple %
outputs (100 or 1000; 100 is

recommended by radamsa) Possible output

./radamsa test®. txt SR 1BBE" -0 mutated%n.txt JFOUND output (after 52345 executions)
register
userl
register
user?

: : login

Combination of yserl

multiple input files! send private message
user<
Content of message
delete user
However, merging of multiple input files is very Login
unlikely (“send msg + delete user + view msg” will —
not be found within 2 hours)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

* Correct selection of mutators (Example of the “chat” target):

user-VirtualBox% ./radamsa -1
Mutations (-m)

ab: enhance silly issues in ASCII string data handling

bd: drop a byte

bf: flip one bit

bi: insert a random byte

br: repeat a byte

bp: permute some bytes

bei: increment a byte by one

bed: decrement a byte by one

ber: swap a byte with a random one

sr: repeat a sequence of bytes

sd: delete a sequence of bytes

ld: delete a line

lds: delete many lines

Lr2: duplicate a line

li: copy a line closeby

Lr: repeat a line

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2018 SEC Consult | All rights reserved

fn:
fo:

nop

swap two lines

swap order of lines

insert a line from elsewhere

replace a line with one from elsewhere
delete a node

duplicate a node

swap one node with another one

swap two nodes pairwise

repeat a path of the parse tree
try to make a code point too wide
insert funny unicode

try to modify a textual number
try to parse XML and mutate it

jump to a similar position in block
Likely clone data between similar positions
fuse previously seen data elsewhere

: do nothing (debug/test)

SEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

« Radamsa is written in Owl Lisp (a functional dialect of Scheme)
* Modifying the code is hard (at least for me because | don’t know Owl Lisp)
e Currently no library support ® (= Slower than in-memory mutation)
« Good mutation and gramma detection (~ 3500 lines)
« Maintained
 Niis writtenin C
« Simple to modify, add to own project or compile as library (and it's fast)
° (from the same guys) FOUND output (after 11450 executions)
« Not as advanced as radamsa ® (~800 lines) cgrater
* Not maintained: Last commit 2014

Ni can also merging multiple inputs
9 Other inputs are On|y Used during “I'andOm_b|OCk()” function send p rivate message

= Merging / Gramma detection not so advanced as with radamsa user3
delete user

A
Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public M
[)

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

https://github.com/aoh/ni

Speed comparision

« The following table gives a speed comparison between different test setups for
mutating data

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Numbers in the table are generated testcases per second

Table does not contain fuzzing or file read/write times (only generation of fuzz data)
TC stands for number of test cases

RD stands for RAM disk for files & programs

Test program was a Python script

Radamsa fast mode uses the following mutators:
* -m bf,bd,bi,br,bp,bei,bed,ber,sr,sd
« Taken from FAQ from hitps://github.com/aoh/radamsa

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

https://github.com/aoh/radamsa

Speed comparision — input small text files

Type of test Radamsa fast ext. Ni library (ctypes)

Input stdin (1 tc), output
stdout (1 tc)

Input files (3 tc), output
stdout (1 tc)

Input files (3 tc), output via
files (100 tc)

Input via files (3 tc), output
via files (1000 tc)

Input files (3 tc), output via
files (100 tc); RD

Input files (3 tc), output via
files (1000 tc); RD

Input 3 samples, output
one (all in-memory)

~ 265

~ 255

~1100

~1100

~1220

~1230

~ 345

~300

~1930

~2150

~2740

~3100

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

(no stdin support)
~775
~7300
~8350
~7300

~8400

ADVISOR FOR YOUR INFORMATION SECURITY

The problem of the search space

The following input triggers the second Use-After-Free flaw in the chat binary:

Depth 1 , :
P register send private message

userl user’Z
register Depth 1Ocontent
user’Z —pdelete user
login login

Depth 6 J 1 J 5

—>user user
Depth 13

—p V1eWw messages

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

The problem of the search space

empty

<empty>

register user2 register

register register
- userl

register
userl
register

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

register

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2018 SEC Consult | All rights reserved

The problem of the search space

« We need at least 7 distinct input-tokens to find the flaw (register, userl,
user2, login, send_private_message, delete user, view_message)

« During real fuzzing we have way more inputs (all possible commands, special
chars, long strings, special numbers,)

« After every input line we can again select one from the 7 possible input-tokens
 We have to find 13 input lines in the correct order to trigger the bug!
 For 13 input lines we have 713 = 96 889 010 407 possibilities

=» Runtime of the fuzzer to find this flaw?

=» This is also a huge difference to file format fuzzing! File format fuzzing does not
produce such huge search spaces, because “commands” can’t be sent at every
node in the tree! (nodes have less children)

=>» AFL is not the best choice to fuzz such problems

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

The problem of the search space

= We must reduce the search space!

 Initial Start-Sequence (Create Users) (This can be seen as our “input corpus”)
 [|nitial End-Sequence (Check public and private messages of all users)
« Encode the format into the fuzzer
 Example: send_message(username, random_string_msg))
« =» Peach Fuzzer
« But that was basically what we wanted to avoid (Fuzzer should work without modification)
* |Instead of adding one command per iteration, add many commands (inputs)

« Same when fuzzing web browsers =» Add thousands of html, svg, JavaScript, CSS, ...
lines to one test case and check for a crash

« Important: Too many commands can create invalid inputs (e.g. invalid command = Exit
application)
« Additional feedback to “choose” promising entries (E.qg.: prefer text output which was not
seen yet, prefer fuzzer queue entries which often produce new output, ...)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

The problem of the search space

The following input triggers the second Use-After-Free flaw in the chat binary:

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2018 SEC Consult | All rights reserved

send private message
userz

content

delete user

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Practice: Lection 9

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Lection 9 — CTF
Chat binary fuzzing

Duration: 5-10 min

Description: See how to
fuzz a CTF binary.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

* Runtime to find the deep second UAF (Use-After-Free) vulnerabiltiy...

user@user-VirtualBox:~/test$ python fuzzer2.py
~Cueue: 528, runtime: 7/ Sec, execs: 2774, exec/sec: 357.80, crashes: 21 BOF [+],UAF1 [-],UAF2 [+]

User hit ctrl+c, stopping execution...

user@user-VirtualBox:~/test$ python fuzzer2.py
~Cueue: 8380, fruntime: 141 sec, execs: 54058, exec/sec: 382.46, crashes: 255 BOF [+],UAF1l [-],UAF2 |+]

User hit ctrl+c, stopping execution...

user@user-VirtualBox:~/test$ python fuzzer2.py
~“Cueue: 2732, 'runtime: 55 sSec, execs: 18732, exec/sec: 339.05, crashes: 156 BOF [+],UAF1l [-],UAF2 |+]

User hit ctrl+c, stopping execution...

user@user-VirtualBox:~/test$ python fuzzer2.py
~Cueue: 8621, fruntime: 166 Sec, execs: 61845, exec/sec: 370.68, crashes: 351 BOF [+],UAF1l [-],UAF2 |+]

User hit ctrl+c, stopping execution...

« UAF1 was removed from patched binary because UAF1 would trigger before UAF2
* This fuzzer also works for any other CTF binary!!

4
Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public m
=4

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Topic: Mimikatz vs.
GFlags & Application
Verifier with PageHeap on
Windows

Runtime: 3 min 15 sec

Description: See how to
find bugs by just using the
application and enabling
the correct verifier settings.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Detecting not crashing vulnerabllities

LLVM has many useful sanitizers!

* Address-Sanitizer (ASAN): -fsanitize=address

» Qut-of-bounds access (Heap, stack, globals), Use-After-Free, ...
Memory-Sanitizer (MSAN): -fsanitize=memory

* Uninitialized memory use
» UndefinedBehaviorSanitizer (UBSAN): -fsanitize=undefined

« Catch undefined behavior (Misaligned pointer, signed integer overflow, ...)

« If you don‘t have source code: DrMemory (based on DynamoRio)

« Use sanitizers during development
* You can also grab ASAN (address sanitizer) builds of firefox or chrome!

- I personally prefer heap libraries for fuzzing because they are faster but many
people also use sanitizers for fuzzing.

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Practice: Lection 10

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Lection 10 —
Sanitizers

Duration: 5-10 min

Description: See different
sanitizers in action.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

ASAN / MSAN

 Use ASAN/MSAN with AFL:
« Cite from ,notes_for_asan.txt” from docs of AFL

»TOo complle with ASAN, set AFL USE ASAN=1 before calling
'make clean all'. The afl-gcc / afl-clang wrappers will
pick that up and add the appropriate flags.

Note that ASAN 1s incompatible with -static, so be
mindful of that.

(You can also use AFL USE MSAN=1 to enable MSAN
instead.)”

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Practice: Lection 11

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Lection 11 —
DrMemory

Duration: 5 min

Description: See
DrMemory In action.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Detecting not crashing vulnerabllities

« Change the heap implementation to check for dangling pointers AFTER a
free() operation! (similar to MemGC)

« Check all pointers in data section, heap and stack if they point into memory
 Check must only be performed one time for new queue entries

send private message

Free() user?
Detection here! content
—) delete user

login

Use after free ~ USE€T?2
—) V1CW MESSAJES

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Overview: Areas which influence fuzzing results

Fork-server

Faster instrumentation code
Static vs. Dynamic
Instrumentation

In-memory fuzzing

NO process switches

Fuzzer speed Input filesize

Fuzzer
Results

Page heap / Heap libs
Sanitizers (ASAN, MSAN,
SyzyASan, DrMemory, ..)
Dangling Pointer Check
Writeable Format Strings Check

Detection rate Mutators

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

AFL-tmin & AFL-cmin
Heat maps via

Taint Analysis and
Shadow Memory

Application aware mutators
Generated dictionaries

Append vs. Modify mode
Grammar-based mutators

Use of feedback from application

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Practice: Lection 12

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Lection 12 — AFL-
CoV

Duration: 5 min

Description: See how to
visualize AFL coverage.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

LibFuzzer

 LibFuzzer — Similar concept to AFL but in-memory fuzzing
 Requires LLVM SanitizerCoverage + writing small fuzzer-functions
 LibFuzzer is more “a fuzzer for developers”
 AFL fuzzes the execution path of a binary (no modification required)

« LibFuzzer fuzzes the execution path of a specific function (minimal code
modifications required)
 Fuzz functionl which processes data format 1 = Corpus 1
* Fuzz function2 which processes data format 2 = Corpus 2
 AFL can also do in-memory fuzzing (persistent mode)

* | highly recommend this tutorial: hitp://tutorial.libfuzzer.info
 And this workshop: https://github.com/Dorls/libfuzzer-workshop
* QOur next labs are from this workshop!

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

http://tutorial.libfuzzer.info/
https://github.com/Dor1s/libfuzzer-workshop

Practice: Lection 13

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Lection 13 —
LibFuzzer simple example

Duration: 5 min

Description: Use
LibFuzzer in an simple
example.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Can you spot the vulnerability?

int dtlsl process heartbeat (SSL *s) { “ H
e e e) N rec.aatat T, Attacker controlled =» ,p” points to an attacker
unsigned short hbtype; Controlled bu-l‘-fer

unsigned int payload, padding = 16; /* Use minimum padding */

/* Read type and payload length first */

Rptype = vor — This macro reads 2 bytes
pL=pi L from p and stores them in
if (hggype == TLS1 HB REQUEST) { payload

unsigned char *buffer, *bp;

int r;

/* Allocate memory for the response, size is 1 byte
* message type, plus 2 bytes payload length, plus
* payload, plus padding
*/

buffer = OPENSSL malloc(l + Z + payload + padding);

bp = buffer;

/* Enter response type, length and copy payload */
*bp++ = TLS1 HB RESPONSE;

s2n(payleoad, bp);

memecpy (bp, pl, payload);

bp += payload;

/* Random padding */

RAND pseudo bytes(bp, padding);

r = dtlsl write bytes(s, TLS1 RT HEARTBEAT, buffer, 3 + payload + padding);
if (r >= 0 && s->msg callback)
s->msg_callback(l, s->version, TLS1 RT HEARTBEAT,

buffer, 2 + payload + padding,
5, s->msg callback arg);

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Can you spot the vulnerability?

 This was Heartbleed from OpenSSL

Heartbeat Anfrage
(Normalfall)

Wenn du wirklich da bist,
sende mir diese 4EE|{:hen "I:Iah"

; \
/

"blah”

Heartbleed Anfrage -
(Angriff)
Wenn du wirklich da bist, \

An g rei fer sende mir diese 40004 Eemhen "blah”

"hlah_dﬂﬂﬂﬂ_zemhen_mn_helre bigen_
teilweise sensiblen Serverdaten..."

~

Server

Source: https://de.wikipedia.org/wiki/Heartbleed

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Can you spot the vulnerability?

int dtlsl process heartbeat (SSL *s) { — - - Attacker Controlled

Title: The Art of Fuzzing| Responsible: R.

© 2018 SEC Consult | All rights reserved

unsigned char *p = &s->s3->rrec.datal[C], *pl;
unsigned short hbtype;
unsigned int payload, padding = 16; /* Use minimum padding */

/* Read type and payload length first */
hbtype = *p++;
n?s(p, payload) ;
pl = p;
/* snipped removed */
if (hbtype == TLS1 HB REQUEST) ({
unsigned char *buffer, *bp;
int r;
/* Allocate memory for the response, size is 1 byte
* message type, plus 2 bytes payload length, plus
* payload, plus padding
*/
buffer = OPENSSL malloc(l + Z + payload + padding);
bp = buffer;

/* Enter response type, length and copy payload */
*bp++ = TLS1 HB RESPONSE;

22 c(:iiﬁi];l);adlglbpg;yload) _ Copies ,payload” (user supplied) bytes from

bp += payload; / ¢ pl (= p = ssl input data) to ,bp“ (output buffer)
* Random padding * . .

RAND pseudo bytes (bp, padding) ; Size of ,,pl“is never checked!

r = dtlsl write bytes(s, TLS1 RT HEARTBEAT, buffer, 3 + payload + padding);

if (r >= 0 && s->msg callback)
s->msg_callback(l, s->version, TLS1 RT HEARTBEAT,
buffer, 2 + payload + padding,
5, s->msg callback arg);

Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

extern "C" int LLVMFuzzerTestOneInput(const uint8 t *Data, size t Size) {

¥

static SSL CTX *sctx = Init();
55L #Fserver = SSL_new{sctx}j

BIO *sinbio = BIO new(BIO s mem()});
BIO *soutbio = BIO new(BIO s mem()

S5L_do_handshake(server);
SSL free(server);

return ©;

Source: http://tutorial.libfuzzer.info

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Practice: Lection 14

Topic: Lection 14 —
LibFuzzer Heartbleed.

Duration: 5 min

Description: Use
_IbFuzzer to find
HeartBleed.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Practice: Lection 15

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Lection 15 —
LibFuzzer C-ares

Duration: 5 min

Description: Use
LibFuzzer to find a bug In
C-ares.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Practice: Lection 16

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Lection 16 —
LibFuzzer Woff

Duration: 5 min

Description: Use
LibFuzzer to find a bug In
Woff.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Dynamic Instrumentation Frameworks

 Dynamic runtime manipulation of instructions of a running application!

« Many default tools are shipped with these frameworks
e drrun.exe —t drcov -- calc.exe
e drrun.exe —t my_tool.dll -- calc.exe
e pin -tinscount.so -- /bin/ls

» Register callbacks, which are trigger at specific events (new basic block / instruction
which is moved into code cache, load of module, exit of process, ...)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Dynamic Instrumentation Frameworks

« For transformation time callbacks can be registered
« Called only once if new code gets executed
« drmgr_register _bb_instrumentation_event()

 [For execution time we have two possibilities
« Called every time the code is executed
« Clean calls: save full context (registers) and call a C function (slow)

* Inject assembler instructions (fast)
« Context not saved, tool writer must take care himself
» Registers can be “spilled” (can be used by own instructions without losing old state)
 DynamoRio takes care of selecting good registers & saving and restoring them

 Nudges can be send to the process & callbacks can react on them
 Example: Turn logging on after the application started

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

DynamoRIO

application code software

Transformation time

xecution time

DynamoRIO

indirect
branch
lookup

Source: The DynamoRIO Dynamic Tool Platform, Derek Bruening, Google

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

DynamoRIO

« Example: Start Adobe Reader, load PDF file, exit Adobe Reader, extract coverage data
(Processing 25 PDFs with one single CPU core)

* Runtime without DynamoRio: ~30-40 seconds

« BasicBlock coverage (no hit count): 105 seconds
* Instrumentation only during transformation into code cache (transformation time)

« BasicBlock coverage (hit count): 165 seconds
* Instrumentation on basic block level (execution time)

« Edge coverage (hit count): 246 seconds

* Instrumentation on basic block level (many instructions required to save and
restore required registers for instrumentation code) (execution time)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

DynamoRio vs PIN

* PIN is another dynamic instrumentation framework (older)
« Currently more people use PIN (=» more examples are available)
 DynamoRio is noticeable faster than PIN

« But PIN is more reliable
 DynamoRio can'’t start Encase Imager, PIN can
 DynamoRio can’t start CS GO, PIN can
« During client writing | noticed several strange behaviors of DynamoRio

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Instrumentation of
Adobe Reader with
DynamoRio

Runtime: 2 min 31 sec

Description: Use
DynamoRio to extract code-
coverage of a closed-source
application using only a
simple command.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Determine Adobe
Reader “PDF loaded”
breakpoint with coverage
analysis.

Runtime: 1 min 08 sec

Description: Log coverage
of “PDF open” action to get a
breakpoint address to detect
end of PDF loading.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Practice: Lection 17

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Lection 17 — DrCov

Duration: 1 min

Description: Use DrCov
to extract coverage
iInformation.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Practice: Lection 18

Topic: Lection 18 — Log
function calls.

Duration: 5 min

Description: Read a
sample DynamoRIo client
code and execute lIt.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Practice: Lection 19

Topic: Lection 19 — Write a
DynamoRio client to log all
cmp values.

Duration: 15 min

Description: Log cmp
values and use them for
fuzzing.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

WInAFL

« WInAFL - AFL for Windows developed by Ivan Fratric
« Download: https://github.com/ivanfratric/winafl

e Two modes:

« DynamoRio: Source code not required

» Can be used to modify closed-source applications at runtime =» Our focus today!
« Syzygy: Source code required

* Fuzzing Mimikatz =» Demo 4 from https://sec-consult.com/en/blog/2017/11/the-art-of-fuzzing-slides-and-
demos/index.html

 =>» WInAFL uses in-memory fuzzing and we therefore must specify a target function
which should be fuzzed

afl-fuzz.exe -i in -o out -D C:\work\winafl\DynamoRIO\bin64 -t 20000 --
—coverage module gdiplus.dll -coverage module WindowsCodecs.dll

—-fuzz iterations 5000 -target module test gdiplus.exe

-target offset 0x1270 -nargs 2 -- test gdiplus.exe (@

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

https://github.com/ivanfratric/winafl
https://sec-consult.com/en/blog/2017/11/the-art-of-fuzzing-slides-and-demos/index.html

Title: The Art of F g| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Fuzzing mimikatz on
Windows with WInAFL

Runtime: 10 min 39 sec

Description: See the
WINAFL fuzzing process on
Windows of binaries with
source-code available In
action.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

BN mimikatz 2.1.1 %86 (ce.e0)

C:\UsersvnormalUser\DesktopZtest mimikatzireal mimikatz>mimikatz.exe

A Pid 2740 -
File Edit

JHHHE . Imimikatz 2.1.1 (%86) built on Aug 13 2017 17:27:38

CHE TOHH. H La Vie, H L Hmour

Cnmman HHt -"" \\ i "f* * o=

H4 \ / ## Benjamin DELPY ‘gentilkiwi® (benjamin@gentilkiwi.com)

ModLoad : | i Jen L1 vk
odload. | IR LS http:ffblog.gent11k1w1.comfmlmlkatg (oe.eo)
HodLoad: HEHEE with 21 modules = = =/
HodLoad:
HodLoad:

et llninikatz # sekurlsa: :minidump exploit.dmp

el owitch to MINIDUMP : exploit.dmp’
odLoad :
ModLoad: L
ﬁng%ﬁﬁ: mimikatz # sekurlsa::logonpasswords
el Jpening : ‘exploit.dmp’ file for minidump. ..
ModLoad: | -

HodLoad :
ModLoad :
ModLoad :
ModLoad :
ModLoad :
(abd fal): Access violation — code 0000005 (11! =zecond chance 111)

m

Sesemd ool shx=02hdl6hc ecx=00000004 ed=x=00000000 e=i=0010{d7c edi=006bfelf
=1p=41414141f8e=p= DDlDfd44 Ehp Q010£d4d50 1opl=0 nv up 21 pl Er na pe nc
= =0023 f==003b g==0000 efl=00010246

41414141 ¥7

L) 2

00005 |

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

y
@

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Autolt

« Autolt definition (https://www.autoitscript.com):

Autolt v3 1s a freeware BASIC-like scripting
language designed for automating the Windows GUI and
general scripting. It uses a combination of
simulated keystrokes, mouse movement and
window/control manipulation in order to automate
tasks

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

https://www.autoitscript.com/

Autolt Demo Source Code

O J o U W

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

#include <AutolItConstants.au3>

Run ("notepad.exe")

Local $hWand = WinWait (" [CLASS:Notepad]", "", 10)
ControlSend (ShWand, "", "Editl", "Hello World")
WinClose ($ShWand)

ControlClick (" [CLASS:#32770]"™, "", "Button3")
WinSetState (" [CLASS:Notepad]", "", @SW MAXIMIZE)
MouseMove (14, 31)

MouseClick ($SMOUSE CLICK LEFT)

MouseMove (85, 209)

MouseClick (SMOUSE CLICK LEFT)
ControlClick (" [CLASS:#327701"™, "", "Button2")

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Practice: Lection 20

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Lection 20 - Autolt

Runtime: 5 min

Description: Use Autolt to
automate some GUI.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Real-world EnCase
Imager Fuzzing (Vulnerability
found by SEC Consult
employee Wolfgang Ettlinger)

Runtime: 29 sec

Description: See real-world
fuzzing in action.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Exploitability of the vulnerability

Jrr—
LvCove Ieager (Nct Respondegl

XULEE

e T
i Coce(aCatevaged » &) View = 5 Took = 4) Ealirge » . Add Dedenia v W
X3 Home | 5 Evdence %/
O O T Viwwng flanry) v L Sph Mede v 7 Lhcqawe v g Dawice = =
a 04)% Dévme: :"-;-l.._gl L0 SIS
o) Do rage - : — Fod :
T . !’__:“ = #lv iseeneian _I won [41 Hes Sl Sioe : e Yl
Perame. " [orenn | g b Mretecied Frote tin
Ayl / el
y :!Q'Jr;oyﬂtscvnr«vu l - -
Coligen —) | - . — e | |
4 bLagert i
+ Colapes A0 M“ oM me me :’M MmN e mn
0N ON N N0 WO NN N 0N
St lniinded Fovien Phan » 1 LS 2
ehade Wb folden S Num - " Mo | g A " e e N >
ochade Snge Faide Codfumn - % Do
- |) I3 — 4 4 < a 4
Sghect Rem Space on
LN fel | Aab C 7 8 5 / -~
1 bequse =
SQwod | Oy |lxx | D |4 S |6 o P [
i Devwe T Bweee
. e Mo [jan E 1 / i '7 —
Oyt it 2wl F Q . .
. (2] 3
1) Tookts |] meport Jlak J
- °~
Wwe Vabur -
B Nise O s e Canden <
Ty
5 Nkia

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

Autolt

 Another use case: Popup Killer
« During fuzzing applications often spawn error message =» popup Kkiller closes them

« Another implementation can be found in CERT Basic Fuzzing Framework (BFF)
Windows Setup files (C++ code to monitor for message box events)

1 #include <MsgBoxConstants.au3>
2 BWhile 1
3 Local $alist = WinList ()
4 o ; SaList[0] [0] number elements
5 + SalList[x][0] => title ; SaList[x][1] => handle
B @ For $1 =1 To $alList[0][0]
7 E If StringCompare ($aList[$1][0], "Engine Error") == 0 Then
8 ControlClick($aList[$1]([1], "™, "Button2", "left", 2)
9 + EndIf
10 - Next
11 sleep (500) ,; 500 ms
12 WEnd

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

GUI automation — Example HashCalc

H] HoshCae o o s

[ata Format: [ata:
ITe:-:t string LI Imy_input_string

K.ep Farmat: K.ey:

[HMaC ITe:-:t zhring ;I I

¥ MD5 | 4dbef ab5R9e275fc9be1 26067212404

v MD4 | 3129471 25021 do283HaBdc 2o 20022

¥ SHAT | 779da36i642d7 ac0dI6ea5b 33906 BebasT al3e

IV SHAZEE |613e01e97ddadfedB2e57130caba7 HefG04 7707 B deb3c 3929066037416
I~ SHAZRd |

V¥ SHAS12 [b37h7d171a2e02dBaf341 20671021 7186ebafbdh 31 dadb504d53ed476293eB4ashdd85 3046 7cI0Be0320:
I™ RIFEMD1EQ |

I~ PaMaMa |
™ TIGER |
I~ mMD2 |
I~ aDLER32 |

V¥ CRC3Z |2afff7d2

ellonkey!
r ehdule I

SlaveeSaft | Calculate I Cloze Help

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Question 1.
What is the maximum MD5
fuzzing speed with GUI
automation?

Question 2:
How many MD5 hashes can
you calculate on a CPU per
second?

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

GUI automation

 HashCalc.exe MD5 fuzzing
« GUI automation with Autolt: ~3 exec / sec
* In-Memory with debugger: ~750 exec / sec

* In-Memory with DynamoRIio (no instr.): ~170 000 exec / sec

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Reverse Engineering Tricks

for Fuzzinc

How to find the target function

* Important task when fuzzing with WinAFL =» Find a potential target function
to fuzz!

 How can we do this (as fast as possible) if source code is not available?
* This function must open, process and close the input file!

« Technique 1: Log CreateFile() and CloseFile()
« Simple solution: On 32-bit we can use Process Monitor and it's stack traces
« API Monitor is another option
 DynamoRio / PIN script

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

 Example: We now use our PE corpus to fuzz dumpbin from Visual Studio
« Dumpbin is internally just a wrapper to link.exe

C:\
C:\test_pe>link.exe /DUMP /ALL /NOLOGO calc.exe

Dump of file calc.exe

PE signature found

File Type: EXECUTABLE IMAGE

FILE HEADER VALUES
8664 machine (x64)
& number of sections
82E1734B time date stamp
@ file pointer to symbol table
© number of symbols

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public
© 2018 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

How to find the target function

* Process Monitor to find CreateFile and CloseFile

L 'l Process Monitor Filter

Display entries matching these conditions:

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Architecture - ||is -

Reset |
Caolumn Relation Value Action
@ Process M... is link: exe Include
@Dpemtinn is CreateFile Include
@Dpemtinn [= CloseFile Include
@ Path ends with calc.exe Include

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

How to find the target function

* Result:

File

Edit Event Filter Tools Options Help
| RBE TAS | E | A5 |
Time ... Process Name FID Operation Path
18:12:... Elink.exe 3272 Eu[:reateﬁle Chtest pecalc.exe SUCCESS
18:12:... _'Ilnk EXE 3272 EDHEEH'E Ctest pe'calc.exe SUCCESS
18:12:... l_Imh: ENE 3272 E«Ereatel—“lle Ctest pe'calc exe SUCCESS
18:12:... l_Ilnh: e 3272 E«Ereatel—“lle Ctest pe'calc exe SUCCESS
18:12:... l_IlnH EXE 3272 EGHEEH'E Chtest pe'calc.exe SUCCESS
18:12;... §'link.exe 3272 B[JuseFile Ctest pe'calc.exe SUCCESS

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

How to find the target function

« Second CreateFile looks good =» CreateFileW

Time ... Process Name
18:12:... Elink.exe
18:12: li

18:12:
18:12:.

PIDN Operation Path Result
3272 BnCreateFile CMest_petcalc.exe SUCCESS

18:12:| =} Event Properties

18:12.

CMest_petcalc.exe

3272 En[]useﬂle CMest_pe'calc.exe SICCESS
SUCCESS

Frame

K0
K1
K2
K3
K 4
K5
K &
K7
K 8
K3
K. 10
K 11
Uiz
U3
U4
U5

Module

ftmgr sys
fitmgr sys
fitmar.sys
fttmar.sys
ntoskml exe
ntoskml exe
rtoshml exe
ntoskml exe
ntoskml exe
ntoskml exe
rtoskml.exe
ntoskml exe
ritll dll
KemelBase dll
keemel32 dll
limk; exe

Location

Fit RequestOperation StatusCallback + kaebb
FitGetipMame + (ocbe
FitProcessFilelock + k1802

Fit ProcessFileLock + (=1f6b

lofCall Driver + (b4
Mtuenyinformation Thread + (ed 172
SeQuenyfutherticationld Token + (72
PsReferencelmpersonation Token + (ebdf
ObOpenObjectByMName + k165
MtCGuenyinformation Thread + te171f
MCreateFile + k34

ZwYieldEecution + kbb2

MtCreateFile + M

CreateFileVV + 1d1

CreateFileW + (eda

link; exe + (e33c73

Address

xBc77daeh
(B 780560
(B 754 1fe
(Bc754807
(cB2885047
823557
(B2abfib2
(82254056
xB2a%ada
B2ah741c
(xB2aa2462
xB288087a
(b7 AD5Rd4
(edoeaz
(7 Fedocal
(ed33c73

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Path

C Windows system 32 drivers'ftmgr sys
C A Windows system 32 drivers'ftmar sys
C A\ Windows system 32 drivers ftmar sys
CWindows'system 32 drivers‘fitmar sys
CWindows'system 32 rtoskml exe
C\Windows'system 32 rtoskml exe
C\Windows'system 32 rtoskml exe
CrWindows system 32 rtoskml exe

C A\ Windows'system 32 ntoskml exe
CAWindows system 32 ntoskml exe
CAWindows system 32 ntoskml exe
CWindows system 32 rtoskml exe
C:\Windows® System 32 ntdll dll

C: ' Windows® System 32 KemelBase dll
C ' WindowsSystem 32 kemel 32 dll
Citest_pelink exe

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

How to find the target function

 And the call stack of the CloseFile():

1812 B-'link. 3272 BCreateFile Ctest_pe'vcalc exe SUCCESS

18:12:. 3272 BDuseFile Chtest_pe'vcalc exe SUCCESS

13:12:. 3272 ﬁ[ﬁluseﬁle Chtest_pe'calc.exe SUCCESS

7 Event Properties
Event

Frame Module Location Address Path
KO fttmar sys Fit RequestOperationStatusCallback + (eebd (kBc77daeb CAWindows'system 32 drivers fitmar sys
K1 fttmar sys FltiGetipMame + (che (B 78050 CAWindows'system 32 drivers fitmar sys
K2 fitmar sys FitGetimMame + 0116d (B8 780F01 CAWindows'system 32\drivers fitmar sys
K 3 fitrmgr sys FtGetipMName + (1626 (eBc7813ba C\Windows'system 32'drivers ftmar sys
K 4 ntoshml exe lofCall Driver + (b4 82885047 C A Windows'system 32 ntoskml exe
K 5 ntoskml exe RtlCompare Unicode Strings + Ged02 eB2abl7aa C\Windowssystem 32'ntoskml.exe
k& rtoskml exe MmUnmapView(f Section + (keBd2 823a%cas C\Windows system 32 ntoskml exe
k7 rtoskml exe MtOpenProcess + 918 eB2a7065 CWindows system 32 ntoskml .exe
kK 8 rtoskml exe MtFsControlFile + (356 (8235545 CAWindows system 32 ntoskml exe
K5 rtoskml exe MtClose + (ede (823%6eb C\Windows'system 32 ntoskml exe
K. 10 rtoskml.exe ZwYield Bxecution + (kb6Z (82880872 C\Windows'system 32 ntoskml exe
U1 ntdidi Zwllose + I c7ADNRAdd CAWindows' System32hntdlldll
L 12 KemelBase dl CloseHandle = (15 (edoebb3d2 CAWindows'System 32 Kemel Base dll
13 kemel224dl CloseHandle + (28 e7Fiedoaad COAWindows'System32Ncemel 32.dll
14 link exe limk: Exe + (blebbo (ed1ebbc Chtest_peilink exe

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

How to find the target function

« Technique 2: Memory breakpoints on input data
* E.g.: fuzzing network packets or from stdin

« Set the breakpoint at recv() and when it triggers we are in the code which works with
the data

« Technique 3: Log every (internal) function call together with arguments
« After that search the log file for your input

« Can be implemented with DynamoRio / PIN (funcap is a debugger implementation for
this but it's extremely slow)

Hint: Log only cross-module calls to find easy-to-target exported library functions

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

How to find the target function

« Technique 4: Measure code coverage and subtract them
* Execute program twice, one time trigger the target behavior, one time not
« Extract both times code coverage (drrun —t drcov -- C:\applications.exe argl arg?2)

« Use IDA Pro plugin lighting house to subtract the coverage =» Result is code
responsible for the target behavior

« Side note: You can also extract coverage from your input corpus and use lighting
house to detect code which you currently don’t reach!

* Demo 8 from https://sec-consult.com/en/bloq/2017/11/the-art-of-fuzzing-slides-and-
demos/index.html

 Technique 5: Use ataint engine to follow inputs
* More on this later!

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

https://sec-consult.com/en/blog/2017/11/the-art-of-fuzzing-slides-and-demos/index.html

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: ldentification of target
function address of a closed-source
application (HashCalc).

Runtime: 10 min 15 sec

Description: Using reverse
engineering (breakpoints on function
level via funcap and DynamoRio with
LightHouse) to identify the target
function address.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: In-memory fuzzing of
HashCalc using a debugger.

Runtime: 4 min 21 sec

Description: Using the identified
addresses and WinAppDbg we
can write an in-memory fuzzer to
Increase the fuzzing speed to 750
exec / sec!

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: In-memory fuzzing of
HashCalc using DynamoRio.

Runtime: 2 min 58 sec

Description: Using the identified
addresses and DynamoRIio we
can write an in-memory fuzzer to
Increase the fuzzing speed to

170 000 exec / sec!

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Practice: Lection 21

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Lection 21 - WIinAFL
GDI Fuzzing

Runtime: 10 min

Description: Using WInAFL to
fuzz GDI.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

« Use the recompiled GDI.exe binary (with /MT) / Install VC Redist 2010

B C:\Windows\system32\cmd.exe — L] X
« Debug:

: \WinAFL\bin64>C:\DynamoRIO\bin64\drrun.exe -c winafl.dll -debug -target_mod
ule GDI.exe -target_offset 9x1180 -fuzz_iterations 10 -nargs 2 -- GDI.exe inp
ut.bmp

: \WinAFL\bin&4>

:\WinAFL\biné4>afl-fuzz.exe -i in -o out -D C:\DynamoRIO\biné&4 -t 20000 -- -cov
. Fﬁjzthg: erage_module gdiplus.dll -coverage module WindowsCodecs.dll -fuzz_iterations 56©
-target_module GDI.exe -target_offset ©x1180 -nargs 2 -- GDI.exe (@a_

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

WinAFL 1.13 based on AFL 2.43b (GDI.exe)

- process timing -------------------mmm e +- overall results ----+
run time : © days, © hrs, 3 min, 4 sec | cycles done : @
last new path : @ days, © hrs, 1 min, 23 sec | total paths : 31

|
|
| last unig crash :
| 1last uniq hang :

| uniq crashes : @
uniq hangs : ©

none seen yet
none seen yet |

- cycle progress -------------------- +- map coverage -+4---------==-=====—==-- +

| now processing : @ (©.00
| paths timed out : ©
- stage progress
now trying :
stage execs :
total execs :
exec speed :

g
74

3.61% / 5.90%
1.22 bits/tuple

) | map density :
.80%) | count coverage :
+ findings in depth
arith 8\8 | favored paths : 1 (3.23%)
19.6k/39.1k (50.89%) | new edges on : 27 (87.16%)
37.2k | total crashes : B (® unique)
191.5/sec | total tmouts : @ (@ unique)

- fuzzing strategy yields ----------- L bbb +- path geometry

bit flips : |

byte flips : |

arithmetics : |
: @/e, 6/e, 9/0 | own finds :

|

|

known ints

dictionary :

1 9.00%/302, 0.00%

levels :
pending : 31
pend fav :

15/5048, 4/5039, 1/5037
6/630, ©/629, 1/627
e/e, ©/0, 0/0

e/e, ©/0, ©/0
/0, /0

imported :
stability :

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

y
@

ADVISOR FOR YOUR INFORMATION SECURITY

Browser fuzzing

s’,

Browser Fuzzing

* The discussed techniques should NOT be used to fuzz browsers (DOM, JS, CSS,
SVG, ...)

« Reason: When fuzzing a browser you want to find a combination of JS/HTML /

... code which leads to a vulnerability. This is not a binary file format and therefore
the discussed techniques are inefficient

« However: If the browser parses an image, icon, audio, font, ... file you can use the
techniques!

« |It's similar to the “chat” binary where AFL-style fuzzing was also inefficient

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Browser Fuzzing

For browsers you generate HTML / JS files with a grammar-based fuzzer.

Example: Domato from Ivan Fratric (Google Project Zero)

worksth@workéhop-UM:~/besktop/Lectionsfsoftware/domato$ python generator.py --output dir output --no of files 5
Running on ClusterFuzz
Output directory: output

Number of
Writing a
Writing
Writing
Writing

a
a
a

Writing a

$ ~/Desktop/firefox asan/firefox output/fuzz-1.html

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

samples: 5

sample
sample
sample
sample
sample

to
to
to
to
to

output/fuzz-0.html
output/fuzz-1.html
output/fuzz-2.html
output/fuzz-3.html
output/fuzz-4.html

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Practice: Lection 22

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Topic: Lection 22 - Domato

Runtime: 5 min

Description: Use Domato to
generate fuzzed HTML files.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Browser Fuzzing

* Google PO fuzzed major browsers in 2017

* https://gooqgleprojectzero.blogspot.com/2017/09/the-great-dom-fuzz-off-of-
2017 .html

« 100 000 000 iterations per browser with 10 seconds per run
 Chrome, Firefox and Safari with ASAN builds

* |E and Edge with Page Heap

« Cost: Approximately 1000 $

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

https://googleprojectzero.blogspot.com/2017/09/the-great-dom-fuzz-off-of-2017.html

Browser Fuzzing

© 2018 SEC Consult | All rights reserved

* Results:
Vendor Browser Engine Number of Project Zero Bug IDs
Bugs

Google Chrome Blink 2 994 1024

Mozilla Firefox Gecko 4** 1130, 1155, 1160, 1185

Microsoft | Internet Trident 4 1011, 1076, 1118, 1233

Explorer

Microsoft | Edge EdgeHtml |6 1011, 1254, 1255, 1264, 1301,
1309

Apple Safarn WebKit 17 999 1038, 1044 1080, 1082,
1087, 1090, 1097, 1105, 1114
1241, 1242 1243 1244 12486,
1249 1250

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Browser Fuzzing

* On the Windows VM you can find the exploit for CVE-2011-2371 (Firefox Integer
Overflow — Array.reduceRight)

« Avery good exploit to get started with browser exploitation

« Simple compared to other exploits, works very reliable on all Windows operating
systems

 Bypasses ASLR & DEP

 Does not crash the browser

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

On the shoulders of giants

« My research builds on-top of the hard work other researchers shared with the public.
Without their awesome work all of my stuff would definitely not work!

 AFL by Michal ZalewsKi
« Simplest fuzzer to start on Linux and very efficient in finding bugs

 LibFuzzer from LLVM
« Use it when you have C/C++ code and can compile with clang (faster than AFL)

« Honggfuzz by Robert Swiecki
« Simpler to modify than AFL, useful when fuzzing network apps

 WInAFL by Ivan Fratric

« Use it if you want to fuzz Windows software with feedback (alternative: If you don’t want to use
coverage feedback you can try CERT Fuzzer, but | definitely recommend feedback-based fuzzing)

- Based on DynamoRio by Derek Bruening

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Problems of WINAFL

| encountered some problems when fuzzing with WinAFL.:

 Lack of asnapshot mechanism = Just jump at the end of the function back to
the start without resetting the old memory state

* Heap, Stack, global variables, TEB and PEB may change... some data (e.g.:
network packets) may only be available in first iteration, access permission can
change, file positions can change or be closed, locks, semaphores, critical

sections, multi-threaded applications,
* Lots of stuff can go wrong here

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

© 2018 SEC Consult | All rights reserved
ADVISOR FOR YOUR INFORMATION SECURITY

Problems of WINAFL

Example:

void target fuzz function(char *input, size t len) {
crypto func(input, len); // works with g varl & g varz
free(g varl);
g var2->fieldl23 = 567;

=» Second iteration works with the freed variable g_varl (and modified g_var2
content)

=>» We could tell the fuzzer to fuzz only “crypto_func”. But what if this function was
iInlined? What if crypto_func also works with g_var3? If we assume closed source
applications and the target function is very big, it's hard / time consuming to
manually find these dependencies! What if the compiler changed the order ?

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Problems of WINAFL

Example: If we start to fuzz link.exe with WinAFL with the identified address we see
In the log file:

452 Module loaded, ole3Z.dll
49 Module loaded, CRYPTBASE.d1ll1l
50 In OpenFileW, reading NUL

pre fuzz handler
OpenFileW, reading C:\test pel\calc.exe
post fuzz handler

. n pre fuzz handler
55 Exception caught: c0000005
56 crashed
5/ Ewverything appears to be running normally.
58 Coverage map follows:

59

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: VV1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Problems of WINAFL

| encountered some problems when fuzzing with WinAFL.:

 Not 100% compatible with Page Heap because of in-memory fuzzing
« If data is not freed during the iteration, some checks are never performed!
« If a global variable is freed during the iteration, we introduce a double-free!

 If memory is allocated in the iteration, but not freed, we spray the heap which
means we have to restart the application after some thousand iterations

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

PageHeap

 Undetected by page heap:

Uint8 t *data = static cast<uint8 t *>(Malloc(17));
data[-1] = 0x11l; // no crash

data[l7] = 0x11l; // no crash

data[30] = 0x11l; // no crash

// No free(datal)

* Windows requires 16-byte aligned heap pointers (on x64), therefore it can only use fill
patterns to detect 1 to 15 byte overflows (or negative ones); Fill patterns are just checked
at free()

* In-memory fuzzing often doesn’t reach the free because we go to the next iteration...
« Same applies for other heap allocation routines (new, RtlAllocateHeap, ...)

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

PageHeap

 Undetected by page heap:

uint8 t *datal = static_cast<uint8_ t *>;
printf("Data: %p\n", datal);

HANDLE hFile = CreateFileA("test.tmp”, GENERIC READ,FILE SHARE READ,NULL,
if (hFile == INVALID_HANDLE_VALUE)[{ ... }
DWORD readBytes;
BOOL ret = ReadFile(hFile, datal,[20] &readBytes, NULL);
if (ret == FALSE) {
cerr << "ERROR ReadFile"” << endl;
cerr << "CODE: "<< GetLastErrorAsString() << endl;
return -1;

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

« Execution with page heap enabled:

C:\Users\rfr\Documents\Visual Studio 2017\Projects\HeapTestings\x64\Release>HeapTestings.exe
Data: ©00001ABF52E1FFO

ERROR ReadFile
CODE: Invalid access to memory location.

* Inside WinDbg:

0:000> g

ModLoad: @©ee7ffa 5aa70000 ©0087ffa 5aa8l000 C:\WINDOWS\System32\kernel.appcore.dll
ModLoad: @@ee7ffa 5c760000 ©8e87ffa 5c7fdeee C:\WINDOWS\System32\msvcrt.dll
ModLoad: @eee7ffa 5c640000 ©0ee7ffa 5c75f0e08e C:\WINDOWS\System32\RPCRT4.dll
ntdll!NtTerminateProcess+0x14:

Peee7ffa 5e7303f4 c3 ret

= We don‘t see an exception although page heap is enabled!
=» Our fuzzer would also miss it!

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: VV1.0/2018-05 | Confidentiality Class: public

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

[rbptuar_#4],
short loc_H40055B

edi, offset s : "Testliyn"

_puts loc_HOOSSB: : "Test2\n”

short loc_400565 mouy edi, offset aTest2

call _puts

 WInAFL injects here
loc_400565: ; "Test3\n"

mov edi, offset aTest3
call _puts loc_400576:

oy eax, mouv eax,
jmp short locret_40057B

locret _4HOOSTB:
leave

retn
main endp

4
Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public m
=4

© 2018 SEC Consult | All rights reserved
ADVISOR FOR YOUR INFORMATION SECURITY

SEC Consult Fuzzer

So | started to develop my own fuzzer to solve the problems

1. Full logic is injected into the target application =» No inter-process communication
required, mutations are performed in-memory, file-reads are cached, full multi-core support

2. Snapshot mechanism which creates process snapshots and can quickly (!) restore the
snapshot (this works with my own heap implementation which doesn’t have the problems

of page heap)
3. Taint Engine to reduce number of bytes which must be fuzzed

4. Playing around with new ideas from academic papers = | try to implement and test all
of them

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Taint Analysis

« Taint Analysis:

« With a PIN / DynamoRio tool follow data-flow by tainting memory
» Assign one bit to every byte in RAM, 0... not tainted, 1 ... tainted
« Store per tainted byte extra information (e.g. on which input bytes it depends)

« Move taint status around with every instruction (e.g. mov rax, [memory] = If [memory] is

tainted rax will also be tainted; xor rax, rax =» Rax will be untainted) by injecting code with
DynamoRio

« Taint Analysis Tools:
 Libdft, Triton, bap, panda, manticore, Own DynamoRio client, ...

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Combine Call-Graph with Taint-Analysis

=>» We can write a DynamoRIo/PIN tool which tracks calls and taint status
=> Automatically detect target fuzz function

_start

Target
Function
to fuzz

Open input file
aCCess aCCesSs

func6 func? func8 func9

aCCess aceess acCCess

aCCesSs

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Close input file

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Fuzzing with taint analysis

1. Typically byte-modifications are uniform distributed over the input file
2. With taint analysis we can distribute it uniform over the tainted instructions!

20 Mutations 20 Mutations

20 Mutations 50 Mutations

20 Mutations 20 Mutations

20 Mutations 10 Mutations

20 Mutations 0 Mutations

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Maybe don‘t fuzz this at all

X2 is maybe a
Instruction x1:W copy / search function
Instruction X2: Read byte 1,2,3,4

Instruction X3: Read byte 2
Instruction X4: Read byte 1,2
Instruction X5: Read byte 2,3

Byte 1 read by 2 instructions 2/10 = 20%
Byte 2 read by 5 instructions 5/10 = 50%
Byte 3 read by 2 instructio 2/10 = 20%
Byte 4 read by 1 instruction 1/10 = 10%

Byte 5 read by O instructions 0/10 = 0%

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Fuzzing vs. Symbolic execution

=» Fuzzing all bytes:

mov al, [edi+8Ah]
sub al, 3eh ; '@’
xor al, eAAh
cmp al, 11h
jnz short loc_4@16Al
; 1
FIFIE
push offset special case ; Bug

jmp short loc_4018A6 loc_4010A1: ; No bug

push offset default_case

=> Input file is for example 1000 Byte (1 KB)
= 256 possible Byte values for 1000 Byte =» 256 000 potential executions (in our case ~2600)

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Fuzzing vs. Symbolic execution

=» Symbolic execution (simplified):
user_input[0x0a]

user_igput[Ox0a] — 0x30

mov al, [edi+BAh]:§ !

sub al, 36h ; '@ (user_iInput[Ox0a] — 0x30) ~ Oxaa

xor al, @AAh Ar"———————

) user_jinput[Ox0a] — 0x30) * Oxaa) == 0x11
cmp al, 11h Ar”—————((
jnz short loc_4@16Al
1
Y

FIFIE
push offset special case ; Bug

jmp short loc_4018A6 loc_4010A1: ; No bug

push offset default_case

=» Two branches, one with value == 0x11 and one with value != 0x11
=» Solution for == 0x11: user_input[0x0a] := (Ox11 ~ Oxaa) + 0x30 = Oxeb

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Fuzzing vs. Symbolic execution

=» Taint Analysis in Fuzzing

/ Taint al because [edi+0x0a] depends on input[0x0a]

mov al, [edi+8Ah]
sub al, 3eh ; '@’
ol 2 mh Thisl|jnz d ds on tainted byte input[0x0a]
cmp al, 11h isljinz depends on tainted byte input[Ox0a
jnz short loc 4010A1 —
§ ' % All our inputs take this path!
FIZE
push offset special case ; Bug

jmp short loc_4018A6 loc_4010A1: ; No bug

push offset default_case

= Query for conditional jumps (dep. On our input), where all inputs take the same path
= Taint Engine returns input byte Ox0Oa =» Just fuzz this byte!
=» Check the cmp operand size = If it's 1 or 2 bytes use fuzzing, if it's 4 or 8 b. use symbolic execution

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

Demo Time!

IE‘ SEC Consult Fuzzer by René Freingruber (SEC Consult Vulnerability Lab)

e Demo: SEC Consult Fuzzer :

Fuzzer Status Fuzzer Management Corpus Management Input Bytes Selection Taint Visualization Queue Viewer Crash Viewer Function Logger Project Options Global Options Log Credits Debugging
Project settings
Check settings ‘ ‘ Save settings ‘ ‘ Load settings ‘ ‘ Mew project ‘ ‘ Open project dir ‘ Test run (drrun -t drcov) ‘ Test run (PIN) Q

. . I ADVISOR FOR YOUR INFORMATION SECURITY
° F u Zzer I S Stl I I ear I y al p h a. Project name: |\du|nFuzzTarget_04.05.ana_nulljtr_crash | l:‘ Debug mode Moob mode

. Path to application: |C:,fFuzszJecis,.fappllahonsNu\nFuzzTarget_m.CIE‘ZUE_nu\ljt_crashj’appllmhnnf\ruln—ﬁ,lzz—target.exe | D
* Release: In some months

Application arguments: |_FILE_

Input files dir: |C:,fFuzzProJacisJappllahonsNu\nFuzzTargat_tM.05‘2018_r1u\ljtr_crashﬁnput | D
Valid sample file: |C:,fFuzzProJacis,.fappllauonsNu\nFuzzTargat_U‘LUE‘ZUE_nu\ljt_aashﬁnputﬁnput.mp | D
In-memory fuzzing options Coverage modules Fuzzing mode Coverage type
Auto detect settings | ‘ Auto detect ‘ O Random offset (&l values) O BasicBlock

Start fuzzing module: |vu|n—ﬁ..|r£—iarget.exe

@ Deterministic (all values) @ Edge

+C:\FuzzProjects\applications\WulnFuzzTarget_04.05.2018_null_ptr_crash\application}

+module 1.dll O Deterministic (AFL style) O Edge Fast
Start fuzzing offset: [0x3356 R g o e
-blacklisted.dl Tainted bytes (all values
End fuzzing module: |vu|n—ﬁ..|zz—13rget.exe | ackls
Tainted bytes (AFL style)
End fuzzing offset: |0x3487 | O oot s
L Restore options O Radamsa

Heap Stack Global variables PEE TEB O CTF style @ Keep file size
O Domato O Modify file size
O Fuzzinator

Enable file fuzzing O Test Angora
Mutate files in-memory (cache files in-memory)

File Stdin Network Registry Arbitrary memary

@ Fuzz all functions (based on input file handle)

Input type
Startup automation O
" ; . Text
O Fuzz one spedific function (based on function callstack hash) |:| Use Python startup saript
Target function callstack hash: @ Binary
Script path:

Target function number of invocation with hash: |:| Use Autolt startup script

Script path:

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

Fuzzing rules

Start fuzzing!

Start with simple fuzzing, during fuzzing add more logic to the next fuzzer version
Use Code/Edge Coverage Feedback

Create a good input corpus (via download, feedback or grammar)

Minimize the number of sample files and the file size

Use sanitizers / heap libraries during fuzzing (not for corpus generation)

Modify the mutation engine to fit your input data

Skip the “initialization code” during fuzzing (fork-server, persistent mode, ...)

Use wordlists to get a better code coverage

10. Instrument only the code which should be tested

11. Don'’t fix checksums inside your Fuzzer, remove them from the target application (faster)
12. Start fuzzing!

© 0N Ok WDNPRE

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2018 SEC Consult | All rights reserved

Where to get more information

 Reddit:
« https://www.reddit.com/r/fuzzing/
 Most fuzzing related blog posts are published here

 RodeOday:
« https://rodeOday.mit.edu/
« A continuous bug finding competition

« DARPA Challenge set for Linux/Windows/MacOS
 https://github.com/trailofbits/cb-multios

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

https://www.reddit.com/r/fuzzing/
https://rode0day.mit.edu/
https://github.com/trailofbits/cb-multios

Thank you for your attention!

For any further questions contact me

René Freingruber
@ReneFreingruber
r.freingruber@sec-consult.com

+43 676 840 301 749

SEC Consult Unternehmensberatung GmbH
Mooslackengasse 17
1190 Vienna, AUSTRIA

WWW.Sec-consult.com

A
1@?

ADVISOR FOR YOUR INFORMATION SECURITY

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

https://twitter.com/renefreingruber?lang=de
mailto:r.freingruber@sec-consult.com
http://www.sec-consult.com/

SEC Consult in your Region.

AUSTRIA (HQ)

SEC Consult Unternehmensberatung GmbH
Mooslackengasse 17
1190 Vienna

Tel +43 1890 30430
Fax +43 1 890 30 43 15
Email office@sec-consult.com

LITHUANIA

UAB Critical Security, a SEC Consult company
Sauletekio al. 15-311
10224 Vilnius

Tel +370 5 2195535
Email office-vilnius@sec-consult.com

RUSSIA

CJCS Security Monitor

5th Donskoy proyezd, 15, Bldg. 6
119334, Moscow

Tel +7 495 662 1414

Email info@securitymonitor.ru

GERMANY

SEC Consult Deutschland
Unternehmensberatung GmbH
Ullsteinstral3e 118, Turm B/8 Stock
12109 Berlin

Tel +49 30 30807283
Email office-berlin@sec-consult.com

SINGAPORE

SEC Consult Singapore PTE. LTD
4 Battery Road

#25-01 Bank of China Building
Singapore (049908)

Email office-singapore@sec-consult.com

THAILAND
SEC Consult (Thailand) Co.,Ltd.

29/1 Piyaplace Langsuan Building 16th Floor, 16B

Soi Langsuan, Ploen Chit Road
Lumpini, Patumwan | Bangkok 10330

Email office-vilnius@sec-consult.com

Title: Finding security vulnerabilities with Fuzzing | Responsible: R. Freingruber | Version / Date: V1.0/2018-05 | Confidentiality Class: public

© 2018 SEC Consult | All rights reserved

SWITZERLAND

SEC Consult (Schweiz) AG
Turbinenstrasse 28

8005 Zlrich

Tel +41 44 2717770

Fax +43 1 890 30 43 15

Email office-zurich@sec-consult.com

CANADA

i-SEC Consult Inc.
100 René-Lévesque West, Suite 2500
Montréal (Quebec) H3B 5C9

Email office-montreal@sec-consult.com

©r

ADVISOR FOR YOUR INFORMATION SECURITY

