API design for cryptography

i AR 17-19
(/\W,/ October

& 1]
—_— 4----n —_——
@,------

w iy~ % I N i oo
‘.-----. |

"W MMXVIL T\
" \"mﬁrﬂmm‘*‘}

\-\lﬂ

HACK LU

Frank Denis - @jedisct1

Who'’s that creepy guy?

Frank Denis
@jedisct1

https://primulinus.com

Application security, cryptography, malware analysis,
protocol design, computer vision/digital image processing...

OSS zealot

Spends way too much time on Twitter

https://primulinus.com

Crypto Is everywhere

And its domain extends way beyond mere encryption.

il

Google

how to encrypt stuff inc

how to encrypt stuff in c

All Videos News Shopping Images More Settings Tools
About 2,960,000 results (0.69 seconds)

encryption - Simply encrypt a string in C - Stack Overflow
https://stackoverflow.com/questions/7622617/simply-encrypt-a-string-in-c ~

Oct 1, 2011 - I'm trying to encrypt a query string on 2 game I'm making when opening a url. ... | wish |
could give a code example but I'm not too experienced in C, and I'm not | got something going but
then some things screwed up the url.

Wnte a Basic Encryptlon/Decryptlon Program in C on Vimeo
https:/imeo.com » ringneckparrot » Videos ~

Apr 9, 2012

In this video, we create a simple C Program, that performs a very basic
Encryption and Decryption, by ...

Caesar Cipher in C and C++ [Encryption & Decryption] - The Crazy ...
www.thecrazyprogrammer.com/2016/.../caesar-cipher-c-c-encryption-decryption.htm... ~
Here you can learn C, C++, Java, Python, Android Development, PHP, SQL, JavaScript, Get
program for caesar cipher in C and C++ for encryption and decryption. Thanks man ,you're
awesome,looking forward for more encryption stuff.

How to Write Caesar Cipher in C Program with ... - The Geek Stuff
www.thegeekstuff.com/2014/08/c-caesar-cipher-example/

Aug 7, 2014 - One simple and basic method to encrypt a message is using ... you'll learn how to create
a C program code that will encrypt and decrypt the text ...

how to encrypt stuff in c

All Videos News Shopping

About 2,960,000 results (0.69 seconds)

Caesar Cipher in C and C++

www.thecrazyprogrammer.com/2016,
Here you can learn C, C++, Java, Pythc

program for caesar cipher in C and C++
awesome,looking forward for more enci

How to Write Caesar Cipher
.

You can use a variant of base64 with a custom alphabet, or just a shuffled alphabet. It's not really
secure, but in your case it is probably sufficient. The algorithm is widely used, so it will be easy for
you to find an implementation where you can provide a custom alphabet.

The bonus point is, that whatever you put into the query string, the encoded form will consist of
valid URL characters, if you choose the alphabet appropriately.

answered Oct 1 '11 at 20:14
Roland lllig
26.1k »7 »47 » 88

| did a lot of research and think you're right. | got something going but then some things screwed up the url. Is
there any resources around with some simplistic ¢ base64 functions? — Isaiah

google.com/search?q=baset4+implementation+c. The implementations | saw are pretty simple to understand.
— Roland lllig

e, TN

&% u.-.w..,.....u
T i
\ » .v"l.“?r.\n.ﬂ\n.
5

2 3

Or this one is also exceptionally strong.

1 char xencrypt_hardway(char xdata, char xkey) {

char buffer[PATH_MAX];
strncpy(buffer, "', PATH_MAX);

int 1 = 03
int y = 0; int o ;

for(i =0, vy = @; i <= strlen(data); i++) {
}
for(i = @; i < strlen(data); i++)
{
buffer[i]l= data[i]-15;
}

size_t len = strlen(buffer);
char x*r = malloc(len+1);
return r ? memcpy(r, buffer, len+1l) : NULL;

}

answered Oct 19 13 at 13:34
Sf:::’g;‘ user1839724

WeX¥ 86 22 o6

Another very simple XOR algorithm, I'm using it on ATMEL microprocessors to encrypt packets
transmitted and received using wireless communication.

void encrypt_XOR(char xdata, char xkey) {

int 1 = 0;
int y = 0;

for(i =0, y = 0; i <= strlen(data);) {

int o = 0;
for(o = @; o <= BLOCK SIZE; o++) {
if(datal[i] != '') {
data[i] ~= keyly];
¥
14+
}
Y4+
if(keyly] == "') {
y = 0;
}
}
}
Hope it will help!

answered Jan 25 "13 at 14:30

- eraphim’'s
‘bl 6,160 » 10 » 57 »98

W

~ WUl :n“'aan

. |
-

5 Out Patient
Drop Off

RC4
¢ SEED

AES
GOST DES

Twofish

Camellia Blowfish

RC6
CAST-128

IDEA
2107 3DES

RC5

RC4 ccm OCB SEED

CFB AES
GOST DES

Twofish EAX

Camellia ... Bjowfish

RC6 ECB

GCM] OFB
CAST-128 RC5
IDEA

2107 CTR 3DES
XTS

RC4 ccm OCB SEED

CFB AES
GOST DES

26 bits Twofish EAX

| 192 bits
Camellia ... Bjowfish

256 bits orp ECB
GCM casT-128

=Tols
128 bits IDEA

2107 CTR 3DES
XTS

RC6

RC4 ccm OCB SEED

cre MAC aes
°osT Padding’

56 bits
Twofish 495 pits E

CBC Blowfish
256 bits ECB

GCM casT-128 °OFP

128 bltsYadl |DEAYada

2107 CTR 3DES
XTS

o UIE

RC6

How to encrypt stuff
in PHP?

MCRYPT_3DES

= MCRYPI_ARCFOUR_IV (Libmerypt > 2.4 only)

= MCRYPT_ARCFCUR (liomcrypt > 2.4.x only)

= MCRYP| BLOWFISH

= MCRYPT_CAST_128

. MCRYPT _CAST 256

. MCRYPT_CRYPT
MCRYPT_DES

s MCRYPI_DES_COMPAT (libmerypt 22.x only)

= MCRYPT_ENIGMA {libmcrypt > 2.4x only, alias for MCRYPT_CRYPT)

= MCRYPI_GOSI

= MCRYPT_IDFA (non-free)

. MCRYPT LOKI97 (litmcryot > 2.4.x enly)

¢ MCRYPT_MARS (libmerynt > 2.£.x only, non-free)
MCRYPT_PANAMA (libmcrypt = 2.4.x only)

& MCRYPT_RINDAEL_128 (libmcrypt > 2.4.x only)

: MCRYPT_RIJNDAEL_192 (liomcrypt > 2.4.x only)

= MCRYPI_RIJNDAEL_25G (libmerypt > 2.4.x only)

= MCRYPT_RC2

. MCRYPT RC4 (libmcryat 2.2.x enly)

> MCRYPT_RCG (libmerypt > 2.4x anly)
MCRYPT RC6 128 (liomcrypt 2.2.x only)

¢ MCRYPI_RC6_192 (libmerypt 22.x only)

- MCRYPT_RC6_256 (libmcrypt 2.2.x only)

= MCRYP|_SAFERDSG

> MCRYPT_SAFER128

: MCRYPT SAFERPLUS (liomerypt > 2.4.x only)

¢ MCRYPT_SERPENT(libmerypt > 2.4.x only)
MCRYPT SERPENT 128 (libmcrypt 2.2 only)

¢ MCRYPT_SERPENT_192 (libmerypt 2.2 only)

- MCRYPT_SERPENT_256 (libmcrypt 2.2.x only)

: MCRYP_SKIPJACK (Libmerypt > 2.4.x only)

= MCRYPT_TEAN (libmcrypt 2.2.x anly)

= MCRYPT THREEWAY

= MCRYPT_TRIPLEDES (libmerypt > 2.6 enly)
MCRYPT TWOFISH (for older mcrypt 2.x versions, or mcrypt = 2.4.x)

: MCRYPT_TWOFISH128 (TWOFISHxx are available in newer 2.x versions, out not in the 2.4x versions)
MCRYPT_TWOFISH192

S MCRYPI_IWOFISHZ56

= MCRYPT_WAKE (libmcrypt > 2.4.% only)

= MCRYPT XTEA (libmerypt > 2.4x only)

Reference
documentation

You must (in CFB and OFB mode) or can (in cBC mode) supply an initialization vector (IV) to the respective cipher function. The IV must be
unique and must be the same when decrypting/encrypting. With data which is stored encrypted, you can take the output of a function of the

index under which the data is stored (e.g. the MD5 key cf the filename). Alternatively, you can transmit the IV together with the encrypted data
(see chapter 9.3 o Applied Cryptography by Schneier (ISBN 0-471-11709-9) for a discussion of this topic).

Crypto is hard

USING crypto is
hard, too

This leads to security disasters.

Developers are not to
blame

Crypto is often a
necessary, but tiny piece
In an application

Developers expect things to just work.
Like all other pieces their application depends on.

Webcrypto API

N000000...

...000...

...000...

...000...

...000...

...000...

B, AES-CMAC

1. RSEASSA-FKC

! | ImperiKey |

. AES-CEC

gercratexey |

gereratekey
AES-GCN

geraratekey

T ¥
2 1-VI_D

cratexey |

imporiKey | exportKey | sign | venfy

mpcriKey | expertkey | slgn | verity

impariKey | expoertKey | encrypt | decrypt | wrapKeay

orikey | sign | verify

dedveKey | dervesits

imperiKey | expertKey | encrypt | decrypt | wrapKey

mpenkey | expertkey | encrypt | decrypt | wrapkey | unvrasKey

imperiKey | exportKey | sign | venfy

| imporiKey | exportKey | encrypt | decrypt | wrapKey | unwrapKey

| ImperiKey | expertkey | encryps | decrypt | wrapKey | unwragKey

AES-KW
garsratekey

MAA ™
Al

- N

aercrateXey

DH

gererat

. SHA,

imporiKey | axportKey | wrapKay | unwrapKay

| ImporKey | exportiey | slan | verity

' | ImperiKey | exportKeyf da

SHA-1 digest | SHA-256 digest | SHAgM o

. CONCAT

mpcerikey | desiveKey | deriveBlts

HKDF-CTR

importkey | deriveKey | derivaBits

. PBKDFZ

... 000...

...000...

... 000...

... 000...

...000...

...0000000!

NaCl

Funded by the European Commission, released in 2010.

Focused on high-speed cryptography
and improving usability.

Restricted to a small set of primitives and parameters
chosen by experts

High-level APls for common operations

Optimized for the host it was compiled on, using tricks of
the C language to save extra CPU cycles

State-of-the-start, simple, highly secure, high-speed
cryptography!

3 years later: adoption
rate remains very low

Tony Arcieri @bascule - 16 janv. 2013 %
@hashbreaker what do you think about a simplified version of NaCl consisting

only of the portable C reference implementations? /cc @ emboss_

O 1 (un)

2013: ibsodium

Tony Arcieri @bascule - 20 janv. 2013
@lotharrr in case you missed it, libsodium (portable C ref NaCl with

SUPERCOP Ed25519): github.com/jedisct1/libso... /cc @jedisct1

O (R}

Warning: this is not a talk
about libsodium

Libsodium just happens to be a good case to look at,
because its APl has evolved a lot over time.

Let’s see why, how,
and some takeaways from the past 4 years

Slow version of Na(Cl:
Instant success!

Usability was the #1 problem
to solve In cryptography

Not speed

Not security

(V)/

Cryptography makes devices communicate securely.

Cross-platform support is no more an option.

Today’s minimum expectations:

Linux
MacOS
10S
Android
Windows (Visual Studio)
Embedded systems
Javascript / WebAssembly

Today’s applications are written using a combination of
programming languages.

APIls designed for a specific
language are problematic.

Macros and pointer arithmetic don’t play
well with (not(C | C++))

Expose everything as
a function

crypto_box KEYBYTES -> crypto _box keybytes|)

Package maintainers
are your best friends

How developers want to
Install dependencies today:

pkg_add, apt-get, brew, pacman, choco...
One pre-built, universal package.
Mainstream build systems suck. All of them.
But package maintainers know how to use them.

And adoption of your project depends on package
maintainers.

Key idea behind NaCl/libsodium: expose
high-level APls for common operations

“I want to encrypt a message”

“I want to verify that a message
hasn’t been tampered with”

‘| want to store a password”

http://haveibeenpwned.com

Simple functions that keep the
amount of user-supplied
parameters down to a minimum

crypto_box_seal(c, “message”, 7, secret_key)

Nobody reads the f~
documentation

What experts want: all the gory details about the chosen
primitives, constructions and parameters

What everybody else want: example code, code snippets
to copy/paste

Also keep in mind that for most people,
a “secret key” means “a password”

Provide examples, *then* explain:

- - - 2 “le j
il | 3 o

inetallation Generic hashing
Frojec s using ibsondiom

Commercial supgon

Single-part example without a key

Bindings for other larguages

Usage _ _
B fd=7ine MESSAGFE [(consl ursigned char)

Ielgers TdeTine MESSAGE_LEN 2Z
S2cUr2 Imemcry
Fash[zcrypto_generichash_BYTES:
Gererating rmndam daa
Sacrat-Kay cryplography crypto_generickashihash,
Autherticatad encryotion e

' oy

&1 thertication
ACAD constuctens
Chatnazd-Pe y130s Single-part example with a key
Origjinal ChaGhaz0-Poly 1305
ICTF ChaChaz0-Fo y13035 con.. #de*ine MESSAGE ((const ursigned char *)
A e L I Zdo 7 inc MESSAGFE | FN 22
ACaChaZD-Foly 1300 constr..
Fashlcrypto_generickash_BYIES ;
ZM w1 praccmpu.. insigned char kay[cryoto_cenerichash_KZYGYTES];
FJblic-key cryptography
randonbytes_baflkey, =i7ent key);
A1 thaerticalad ancryntion
PuUalic-Key signatires crypto_genericrashihash, s1zeo” hash,
(YYo= HESSAGFE, MFSSAGF_ILFN,
Sezled DOXEs

ey, sizeof keyl;
Hrashir:

aenerc hasal

Short-nput 1ashi1g Multi-part example with a key

Watch how people use
your APIs in their own
projects

Watch yourself struggle
when using that very API
INn your own projects

How libraries are used In
real-world projects

crypto_box(): everybody writes wrappers.

crypto_sign(): everybody writes wrappers.
Vulnerability in early Golang bindings due to a
misunderstanding of the API.

OpenSSL: libtls + a bazillion incompatible abstraction layers
in all programming languages. Either close to the metal and
dangerous, or completely different from the original API.

If people write wrappers,
your API could be improved

Watch what people are
building with your APIs

Watch for recurring
questions on Github,
Stackoverflow, etc.

If something Is not
avallable out of the box,
people will reinvent It.

So, implement it.

“It’'s only 1 or 2 trivial lines of
code, I’'m not gonna add yet
another set of APIs just for that
[very common feature request]”

/me, not so long ago.

Reality check

Adding a trivial function is not always bloat. It can be well
worth it.

It will improve code clarity, prevent bugs.

It will save you from having to answer the same questions
over and over again.

It will make users aware that this operation is actually
possible.

Libsodium examples

* crypto box keygen() to create a secret key.

e crypto box seal() to delete the secret key after
encryption.

e crypto kdf () for key derivation.

* randombytes deterministic () for deterministic
random numbers.

All of these are small and trivial functions, yet turned out to be welcome additions.

High-level APIs frustrate
pOwWer users

Expose low-level APIs as well, with access to more
parameters.

Documentation should remain focused on high-level APls.

Do not expose specific
Implementations,
or you'll be screwed later.

Adding new primitives, new constructions:

Does It solve a common
problem impossible to
solve with the current APIs?

Adding new operations

Build a distinct project, maintained independently.
Experiment with new APls. Wait for feedback. Watch how

these APls are being used.
Or if people use them at all.

Look at how people solved similar problems.

weak the

prototype. Use-it in your own apps. Tweak it again.

Eventually, port it to the main project (or not).

Example: blobcrypt

Watch how people use
your APIs in their own
projects

Watch yourself struggle
when using that very API
In your own projects

Nonces (IVs)

Supplement the secret key.
Must be unique for a given key.

The security of most nonce-based ciphers
can be totally destroyed if not.

Shall a crypto API require
nonces from applications?

Yes:

e Some protocols mandate specific nonces

* Nonces can be used to avoid replay attacks/associate
questions with responses In non-pipelined protocols

e Come on, anyone can generate random data and
maintain counters!

\ o}

e Users are too stupid to generate nonces (that’s what
“misuse resistance” stands for, right?)
— Not exactly.

Why “No” should be the
answer today:

Requires redundant code, that APIs could avoid.

People don’t have time to read documentation. Documentation can
be misleading or incomplete.

Maintaining counters is complicated in today’s world where apps run
In the cloud, in multiple containers sharing the same secret keys.

Different ciphers have different requirements and security guarantees.
Random nonces may not be secure. Ditto for counters. Protocols
defining nonce constructions may be broken. APIs should hide these
details and do the right thing instead of blaming users for “misuse”.

IOT/embedded systems: safely generating unigue/random numbers
may not be possible at all.

CVE-2017-13079

CVE-2017-13085

CVE-2017-13086 CVE-2017-13088

CVE-2017-13080

Krack

CVE-2017-13081

CVE-2017-13078
CVE-2017-13083

CVE-2017-13084
CVE-2017-13082

CVE-2017-13087 CVE-2017-13077

Context separation

Reusing a secret key for
different purposes can have
catastrophic implications.

Applications will not do that, right?

It may not be obvious at all:

Shall we blame the
developers?

Or could APIs prevent that?

Modern crypto APIs should
consider context separation.

As of today, no major library does.

Key exchange

Insufficient: provide a DH function.

Actually worse: provide a DH function + a lot of
documentation about how to use it right.

Better in theory: use TLS.
Hell’'s kitchen: reimplement a well-known AKE.
Playing with fire: invent a custom protocol.

Juggling with unlocked hand grenades blind-folded:
reimplement TLS.

Limitations

No Practical

Limitations

(from an API perspective)

Documentation make library developers feel guilt-free,
but doesn’t fix actual problems.

libhydrogen

Started as a lightweight crypto library
for microcontrollers/constrained
environments.

Also an opportunity to design new APIs
based on lessons from the past, and
current trends in cryptography.

Key concepts:

Everything is built upon only two modern cryptographic building
blocks: the Gimli permutation and the Curve25519 elliptic curve.

Concise, consistent, easy-to-use, hard-to-misuse high-level API.
One key size for all operations.

Context (domain separation) required by virtually all APls. One
context size for all operations.

Do not assume that a CSPRNG is available, or works as expected.

Implement what applications frequently use in other libraries.

A single API for all your
hashing needs

HMAC construction

Hash function for short messages
Hash function with 128 bit output
Hash function with 256 bit output
Hash function with 512 bit output
XOF or KDF + stream cipher

> One generic hashing API

Initial libhydrogen prototype: siphash128 + blake2S +
blake2SX
Today: one sponge function

Zero changes to the API

Encryption

Don’t ask applications for a nonce

Automatically attach a synthetic nonce
to the ciphertext

“misuse” resistant

Encryption

Why do applications need explicit nonces/AD?
Check that if we expect the 3rd message in sequence, what we
just received actually is the 3rd message.

Check a message id, to reorder fragmented, unordered messages
(e.g. UDP datagrams).

Check that a message is not older than a given timestamp.

Check a protocol version.

Encryption

Why do applications need explicit nonces/AD?

Check that a value attached to a message is the one we expect
Check that a value attached to a message is the one we expect
Check that a value attached to a message is the one we expect

Check that a value attached to a message is the one we expect

From an API perspective: no AD, no nonce, but a 64 bit integer

Encryption

hydro secretbox keygen(key);

hydro secretbox encrypt(ciphertext,
MESSAGE, MESSAGE LEN, 1,
CONTEXT, key);

hydro secretbox decrypt(decrypted,
ciphertext, CIPHERTEXT LEN, 1,
CONTEXT, key)

Be consistent

HKDF parameters:
hash function, salt, key information.

Salt -> context
Key information -> 64 bit value

One vocabulary, same types used across all the APIs.

Even if the underlying primitives are more flexible, simplify
their interface to what most real-world projects actually need.

Key exchange

Protocol independent
Transport independent
Can be extended

Hard to get wrong

Key exchange

Bob:
hydro kx xx1() -> packett
Alice:
hydro kx xx2(packetl) -> packet?2
Bob:

hydro kx xx3(packet2) -> packet3
(Optional) Alice:

hydro kx xx4 (packet3) -> DONE!

Don’t reinvent the wheel

Noise
Noisesocket

Strobe

+ well-studied constructions

Improving security
through better abstractions

From:

Many raw crypto primitives and combinators + high level
APIs implementing specific protocols

O.

A translation of what primitives can do into what typical
applications need. High-level building blocks with a simple,
unified interface modeled after real-world use cases.

Requirements: no limitations, MR, domain separation.

Frank Denis
@jediscti
frank@primulinus.com

https://libsodium.org
https://github.com/jedisct1/libhydrogen

https://libsodium.org
https://github.com/jedisct1/libhydrogen

