

Dr. Honeypots

How I Learned to Stop Worrying and Know My Enemies

Hack.lu - 2017

Who am I?

Guillaume Arcas - @y0m guillaume.arcas@gmail.com

- Security & Network Analyst since 1997 primarily but not only for French Internet companies. Then specialized in Digital Forensics & Incident Response and joined Sekoia's CERT. <buzzword>Threat Intelligence</buzzword> Afficionado.
- Member of the Honeynet Project's French Chapter since 2010.
- When not hunting for endangered species hanging on the Internet, use to read (thriller, SF, History & Philosophy in no particular order as long as it is printed) and walk my dog.
- I nourish a certain nostalgia for the esheep.exe software hence my Twitter's avatar.

https://malwr.com/analysis/NmM4ZTkyYTQzYTdhNDk2ZWI5ODE4ODdkZGZmMzU5ZDk/

A Brief History of Honeypots

1986

A long time ago in a network far far away...

Clifford Stoll - Astronomer & Computer Wizard Lawrence Berkeley Lab

"And so it happened that on my second day at work, Dave wandered into my office, mumbling about a hiccup in the Unix accounting system. Someone must have used a few seconds of computing time without paying for it. The computer's books didn't quite balance; last month's bills of \$2,387 showed a **75-cent shortfall**."

At that time computers were expensive shared resources and users were charged for every cycle of computing that was used. ATTENTION: Mrs. Barbara Sherwin Document Secretary

SUBJECT: SDI Network Project

Dear Mrs. Sherwin:

I am interested in the following documents. Please send me a price list and an update on the SDI Network Project. Thank you for your cooperation.

> Very truly yours, Laszlo J. Balogh

#37.6 SDI Network Overview Description Document, 19 pages, December 1986

#41.7 SDI Network Functional Requirement Document, 227 pages, Revised September 1985

#45.2 Strategic Defense Initiations and Computer Network Plans and Implementations of Conference Notes, 300 Pages, June 1986

#47.3 SDI Network Connectivity Requirements, 65 pages, Revised April 1986

#48.8 How to Link to SDI Network, 25 pages, July 1986

#49.1 X.25 and X.75 Connection to SDI Network (includes Japanese, European, Hawaiian, 8 pages, December 1986)

#55.2 SDI Network Management Plan for 1986 to 1988, 47 pages, November 1986)

#62.7 Membership list (includes major connections), 24 pages, November 1986)

#65.3 List, 9 Pages, November 1986

"Hey Mike, remember those carrots I left out for bait in January?"

"You mean those SDI files you concocted?"

"Yeah," I said. "Well, my dear, sweet, nonexistent secretary just received a letter."

"Pengo, with his contacts to hackers across Germany, knew how to use Hess's information. Carrying Hess's printouts, one of the Berlin hackers crossed into East Berlin and met with agents from the **Soviet KGB**. The deal was made: around 30,000 Deutschmarks—\$18,000— for printouts and passwords.

The KGB wasn't just paying for printouts, though. Hess and company apparently sold their techniques as well: how to break into Vax computers; which networks to use when crossing the Atlantic; details on how the Milnet operates.

Even more important to the KGB was obtaining research data about Western technology, including integrated circuit design, computer-aided manufacturing, and, especially, operating system software that was under U.S. export control. They offered 250,000 Deutschmarks for copies of Digital Equipment's VMS operating system."

An Evening with Berferd In Which a Cracker is Lured, Endured, and Studied

Bill Cheswick

AT&T Bell Laboratories

Abstract

On 7 January 1991 a cracker, believing he had discovered the famous sendmail DEBUG hole in our Internet gateway machine, attempted to obtain a copy of our password file. I sent him one.

For several months we led this cracker on a merry chase in order to trace his location and learn his techniques. This paper is a chronicle of the cracker's "successes" and disappointments, the bait and traps used to lure and detect him, and the chroot "Jail" we built to watch his activities.

Honeypot.sh

```
exec 2>/dev/null # ensure that stderr doesn't appear
trap "" 1
/bin/echo
    /bin/echo "Attempt to login to inet with $LOGNAME from $CALLER"
            upasname=adm /bin/mail ches dangelo &
    # (notify calling machine's administrator for some machines...)
    # (finger the calling machine...)
) 2>&1 | mail ches dangelo
/bin/echo "/tmp full"
sleep 5
                       # I love to make them wait....
/bin/echo "/tmp full"
/bin/echo "/tmp full"
/bin/echo
sleep 60
                       # ... and simulating a busy machine is useful
```

The following log, from 15 Jan 1991, shows decidedly unfriendly activity:

```
19:43:10 smtpd[27466]: <--- 220 inet.att.com SMTP
19:43:14 smtpd[27466]: ----> debug
19:43:14 smtpd[27466]: DEBUG attempt
19:43:14 smtpd[27466]: <--- 200 OK
19:43:25 smtpd[27466]: ----> mail from:</dev/null>
19:43:25 smtpd[27466]: <--- 503 Expecting HELO
19:43:34 smtpd[27466]: ----> helo
19:43:34 smtpd[27466]: HELO from
19:43:34 smtpd[27466]: <--- 250 inet.att.com
19:43:42 smtpd[27466]: ----> mail from: </dev/null>
19:43:42 smtpd[27466]: <--- 250 OK
19:43:59 smtpd[27466]: ----> rcpt to:</dev/^H^H^H^H^H^H^H^H^H^H^H^H^H^H^H
19:43:59 smtpd[27466]: <--- 501 Syntax error in recipient name
19:44:44 smtpd[27466]: -----> rcpt to:<|sed -e '1,/^$/'d | /bin/sh; exit 0">
19:44:44 smtpd[27466]: shell characters: | sed -e '1,/^$/'d | /bin/sh ; exit 0"
19:44:45 smtpd[27466]: <--- 250 OK
19:44:48 smtpd[27466]: ----> data
19:44:48 smtpd[27466]: <--- 354 Start mail input; end with <CRLF>.<CRLF>
19:45:04 smtpd[27466]: <--- 250 OK
19:45:04 smtpd[27466]: /dev/null sent 48 bytes to upas.security
19:45:08 smtpd[27466]: ----> quit
19:45:08 smtpd[27466]: <--- 221 inet.att.com Terminating
19:45:08 smtpd[27466]: finished.
```


There Be Dragons

Steven M. Bellovin

AT&T Bell Laboratories

Murray Hill, NJ

smb@ulysses.att.com

July 30, 1992

Abstract

Our security gateway to the Internet, research.att.com, provides only a limited set of services. Most of the standard servers have been replaced by a variety of trap programs that look for attacks. Using these, we have detected a wide variety of pokes, ranging from simple doorknob-twisting to determined assaults. The attacks range from simple attempts to log in as guest to forged NFS packets. We believe that many other sites are being probed but are unaware of it: the standard network daemons do not provide administrators with either appropriate controls and filters or with the logging necessary to detect attacks.

8 Conclusions

"Never laugh at live dragons, Bilbo you fool!" he said to himself.

J.R.R. Tolkien, The Hobbit

It is all well and good to decry computer security, and to preach the religion of open access. Unfortunately, there are an increasing number of people with access to the Internet who do not share the morality necessary to make such schemes work. One can assume that one is being attacked; the only questions are how, and how often. (Just who the attackers are is in some sense uninteresting; if one group passes on, another is sure to take its place.)

Our goal is to provide information to the community, and to the proper authorities, on just how the crackers are operating. Our specific methods are not for everyone, but our lessons — and our warnings — are.

The Honeynet Project

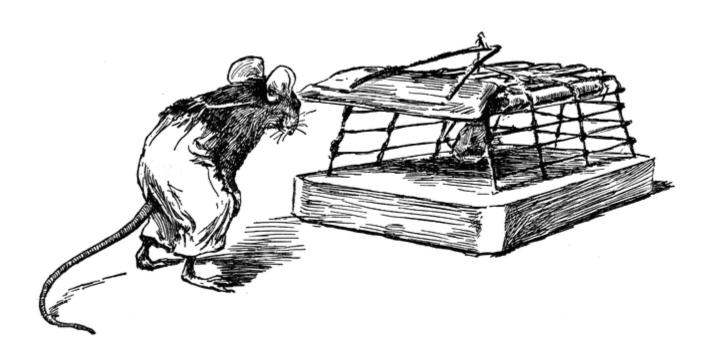
The Honeynet Project is a leading international 501c3 non-profit security research organization, dedicated to investigating the latest attacks and developing open source security tools to improve Internet security.

With Chapters around the world, our volunteers have contributed to fight against malware (such as Conficker), discovering new attacks and creating security tools used by businesses and government agencies all over the world.

Our mission reads "to learn the tools, tactics and motives involved in computer and network attacks, and share the lessons learned" with three main pillars:

- Research
- Awareness
- Tools

http://www.honeynet.org/about



Everything You Always Wanted to Know About Honeypots But Were Afraid to Ask

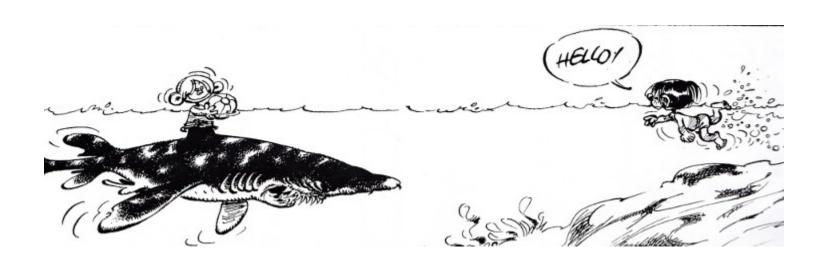
What is a Honeypot?

tl;dr

Shortly said: it's a trap!

But it is a special trap designed not to catch & kill the mouse but to gather information from her:

- the **Technics** she uses to discover the cheese;
- the **Tools** she uses to get to the cheese;
- the **Protocols** she uses to take the cheese out of the kitchen;
- The kind of cheese she likes the most.


Then, once you know enough about mouse's TTPs, you can adjust your defenses to catch & kill her!

Disclaimer: no real mouse was harmed in the making of this slide.

Looks innocuous...

But it can bite!

Disclaimer: no real shark was harmed in the making of this slide.

Honeynet Project Definition (2002)

"A honeypot is a single system connected to an existing production network in order to lure attackers."

Honeynet Project Definition (2004)

"A honeypot is a information system resource whose value lies in unauthorized or illicit use of that resource."

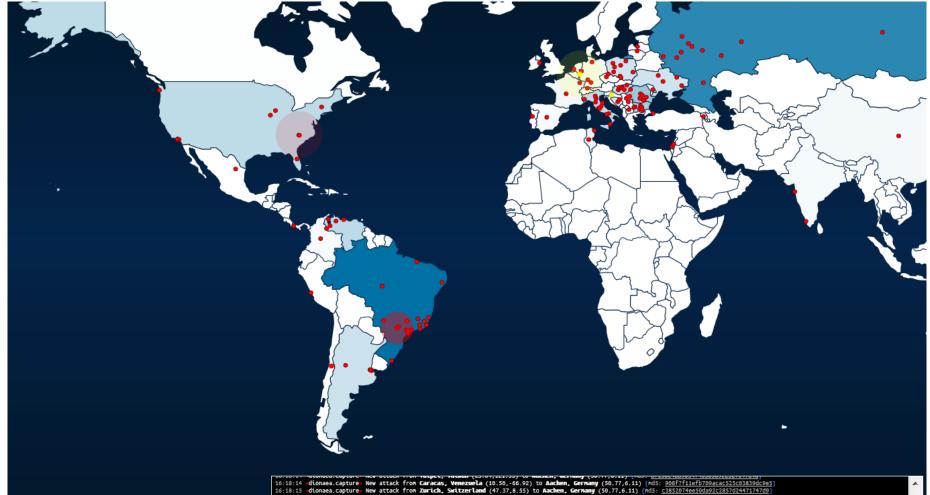
ENISA Definition (2012)

"A honeypot is a computing resource whose sole task is to be probed, attacked, compromised, used or accessed in any other unauthorized way. The resource can be of any type: a service, an application, a system or a set of systems or simply just a piece of information or data."

What is a Honeynet?

tl;dr

A network of honeypots.


Where?

On the Internet:

- it will generate and collect a lot of noise and often useless information;
- metrics of the threat level from the North of the (fire)wall;
- it can help convince the topmanagement not to decrease IT Security budget.

On the Internet:

- Trends:
 - What vulnerabilites are the most exploited?
 - How soon after their disclosure are they tested/searched?
 - It can help assign priorities
 - It can help to adapt the Patch Management policy

Honeynet Project 16:18:14 dionaea.capture New attack from Caracas, Venezuela (10.50.-66.92) to Aachen, Cernany (50.77.6.11) [nds: 908fff1sfb7093cac525c083906c95]
16:18:15 dionaea.capture New attack from Caracas, Venezuela (10.50.-66.92) to Aachen, Cernany (50.77.6.11) [nds: 908fff1sfb7093cac525c083906c95]
16:18:15 dionaea.capture New attack from Caracas, Venezuela (10.50.-66.92) to Zagreb, Creatia (45.80, 16.80) [nds: 908d64adde3708dc687cfe724478e01]
16:18:16 dionaea.capture New attack from End Jamairo, Brazil (-2.9.45.3) to Aachen, Cernany (50.77.6.11) [nds: 908ff64adde3708dc687cfe724478e01]
16:18:16 dionaea.capture New attack from End Jamairo, Brazil (-2.9.45.-46.53) to Aachen, Cernany (50.77.6.11) [nds: 908ff64adde3708dc687cfe724478e01]
16:18:17 dionaea.capture New attack from Noscow, Bussia (55.75,37.62) [nds: 8311601409340ecf130ff63ff7sl072409]
16:18:17 dionaea.capture New attack from Socow, Bussia (55.75,37.62) [nds: 8311601409340ecf130ff7sl072409]
16:18:17 dionaea.capture New attack from Socow, Bussia (55.75,37.62) [nds: 8311601409340ecf130ff7sl072409]
16:18:17 dionaea.capture New attack from Socow, Bussia (55.75,37.62) [nds: 9311601409340ecf130ff7sl072409]
16:18:17 dionaea.capture New attack from Socow, Bussia (55.75,37.62) [nds: 9311601409340ecf130ff7sl072409]
16:18:17 dionaea.capture New attack from Socota (4.65.74.06) to Aachen, Cernany (50.77.6.11) [nds: 98690420bcefd6508ea80d40386da9f89]
16:18:18 dionaea.capture New attack from Socia, Brazil (-22.67.59.42) [nds: 988798f7899f188971aa3f5e027aac]
16:18:18 dionaea.capture New attack from Socia, Brazil (-37.72.1.71) to Zagreb, Cromatia (45.80, 16.00) [nds: 987386748980347463803696727497]
16:18:18 dionaea.capture New attack from Socia, Brazil (-37.72.1.71) to Zagreb, Cromany (50.77.6.11) [nds: 988904706bc7c769d09359065727497]
16:18:18 dionaea.capture New attack from Socia, Brazil (-3.67.72.1.71) to Zagreb, Cromany (50.77.6.11) [nds: 988904706bc7c769d09359065727497]

On internal network:

- if something happens then sh*t hit the fan!
- Early Detection Systems for CERT/DFIR teams;
- If something happens there, no need to argue, no time to lose: you are in trouble and need to investigate.

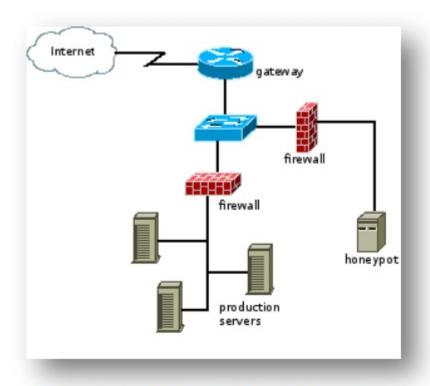


Figure 3: Typical honeypot deployment facing the Internet

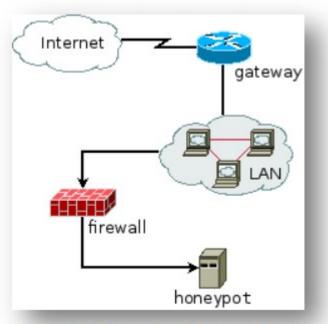


Figure 4: An internal deployment of a honeypot

Taxonomy

Type of attacked resource

- Server-side honeypot
- Client-side honeypot (honeyclient)
- Data (honeytokens)

Level of interaction

- low-interaction: emulated system
- high-interaction: real system
- hybrid: mix of low & high

Low interaction

- Emulates a system
- Less risky: you control what the attacker can do
- Easier to deploy
- As attackers are limited in what they can do, it provides less information
- Can only capture known attacks

High interaction

- Real & full-featured system
- More risky: you may not be able to control what the attacker can do
- More complex
- Can capture unknown exploits
- Beware of worms!

Hybrid honeypots

- Combine both low-interaction and highinteraction tools in order to gain the benefits of both.
- Example: HoneySpider Network: a lowinteraction honeyclient filters out benign websites, while all others (suspicious or malicious) are analysed with high-interaction honeyclients.

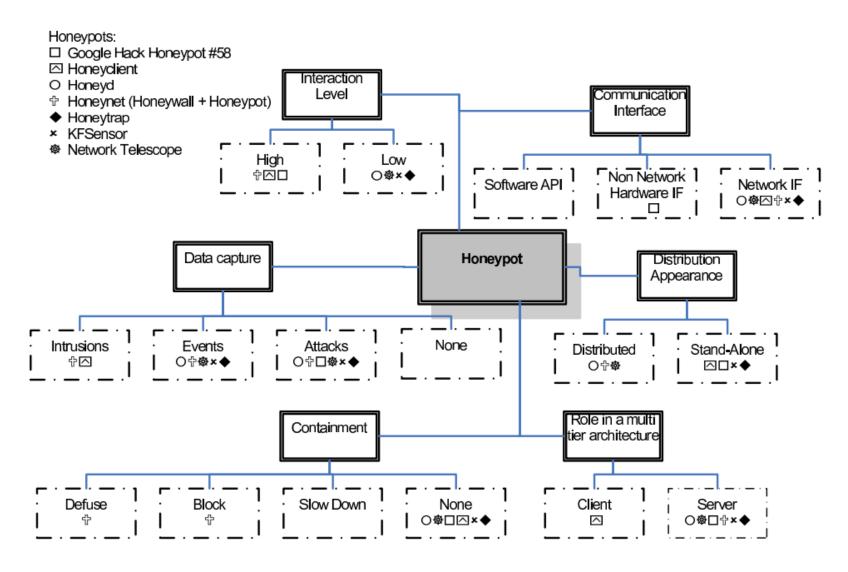


Figure 1: Honeypot Taxonomy

http://www.mcs.vuw.ac.nz/comp/Publications/archive/CS-TR-06/CS-TR-06-12.pdf

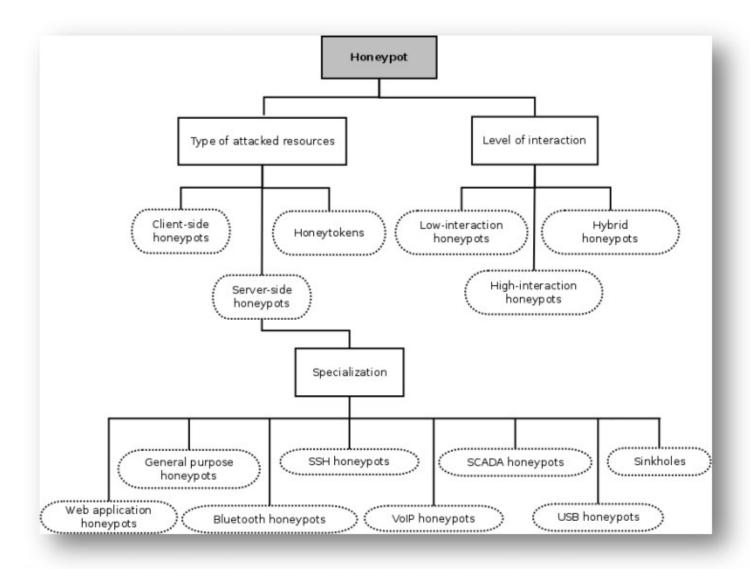
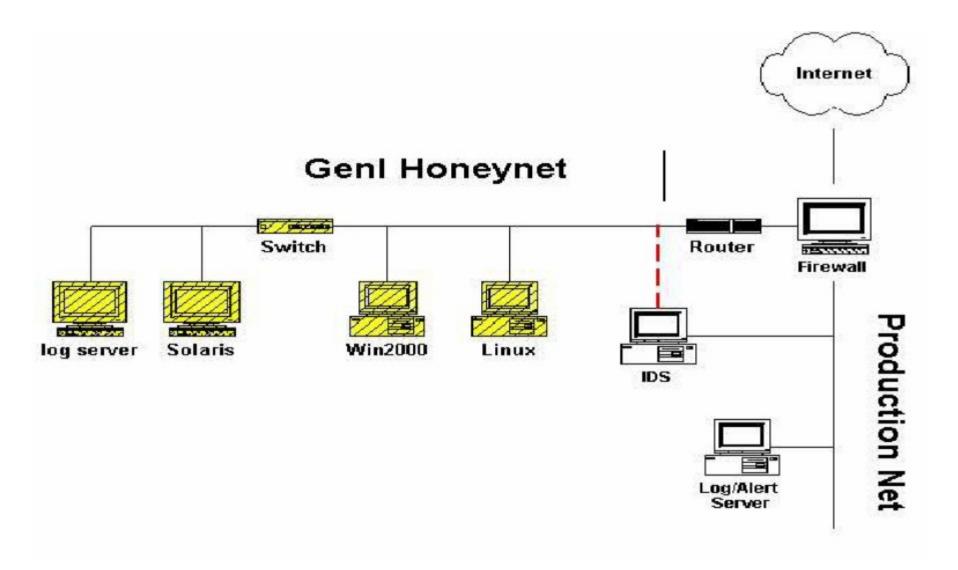
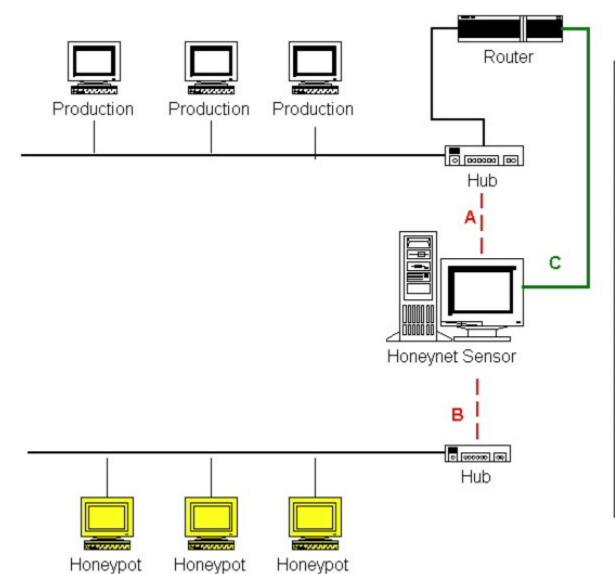



Figure 2: Graphical representation of the classification scheme of taxonomy used in the report


Taxonomy of honeynets

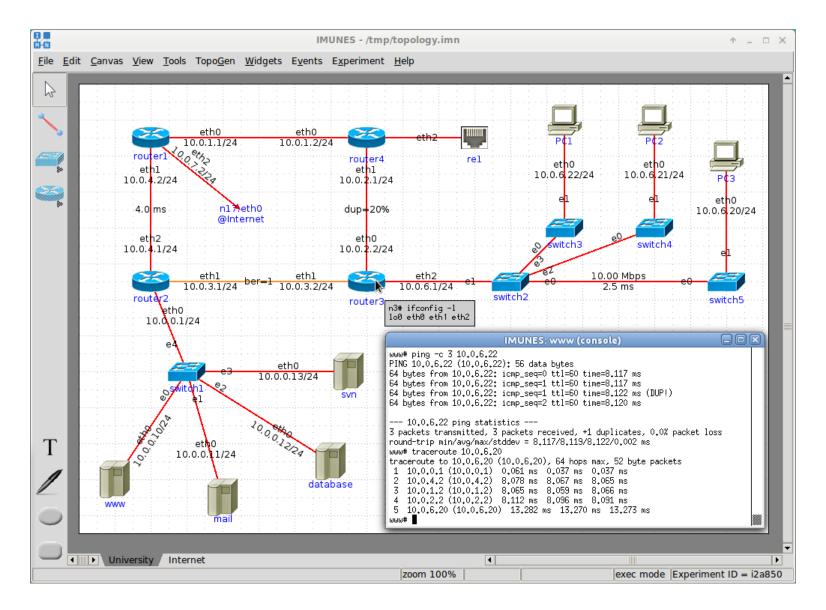
- Gen1: network of honeypots
- Gen2: honeypots in a production environment, for example deployed on a dedicated subnet.
 - Honeywall used for routing and filtering attacks.
- Virtual honeynets
- Distributed honeynets
 - HPFeeds/HPFriends for data sharing

Gen1 honeynet

Gen2 honeynet

Honeynet Sensor Diagram

Sensor consists of a single system functioning as both Data Control and Data Capture requirements.

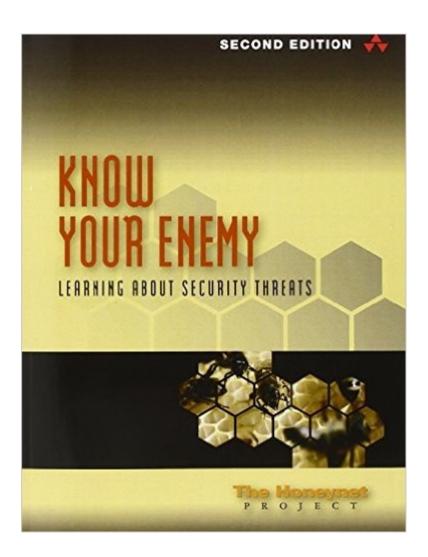

It consists of three interfaces. Two of the interfaces are layer2 (outlined in RED), acting as a switch which segments a production network. The third interface has an IP stack for remote connectivity. This is for both Data Collection and administration.

Interface A: Layer2 interface segmenting production network.

Interface B: Layer 2 interface segmenting Honeynet network.

Intereface C: Layer3 interface VPN connection to collection point.

IMUNES


Further reading

Proactive Detection of Security Incidents

Honeypots 2012-11-20

https://www.enisa.europa.eu/activities/cert/support/proactive-detection/proactive-detection-of-security-incidents-II-honeypots

Why?

Boeing E-3 Sentry

Designed to passively detect High and Low,
 Far and close threats.

Early Awareness & Detection System with Reduced False Positives

In a production environment, some events may be suspicious.

Someone successfully connects to a server at unusual time from India:

- it can be your newly appointed offshore IT management service provider performing usual tasks;
- it can be a SysAdmin connecting from his/her vacation place because of an emergency.

... Or one of these guys.

In a honeypot or a honeynet environment, all events are suspicious by nature.

Someone successfully connects to a honeypot from anywhere at any time:

- it can be an intruder performing lateral movements;
- it can be an insider or a too curious authorized user;
- it can be your internal Red
 Team.

... Or one of these guys.

In a production environment, you can not monitor/log/store everything:

- cost & storage constraints
- legal constraints
- Technically complex
- Need to be able to analyze huge volume of data

In a honeypot or honeynet, you must and can monitor/log/store everything:

- network traffic
- uploaded files
- system logs

Honeypots & CSIRT/CERTs

Incident Response

- Detection

Digital Forensics / Investigation

- Identification
- Attribution
- TTPs

Threat Intelligence

- Most active threats
- Ongoing campaigns
- Pre-targeted attacks warnings

Honeypots & the Intrusion Kill Chain

Reconnaissance	 Harvesting email addresses, conference information, etc Coupling exploit with backdoor into deliverable payload Delivering weaponized bundle to the victim via email, web, USB, etc Exploiting a vulnerability to execute code on victim system Installing malware on the asset 				
Weaponization					
Delivery					
Exploitation					
Installation					
Command & Control	Command channel for remote manipulation of victim				
Actions on Objectives	With "Hands on Keyboard" access, intruders accomplish their original goal				

A honeypot can drastically help detecting adversary's Reconnaissance actions.

Honeytokens

- a honeytoken is a piece of data that should not be accessed through normal activity, i.e. does not have any production value, any access must be intentional, which means it is likely to be an unauthorised act. (ENISA)
- http://www1.cs.columbia.edu/~angelos/Pape rs/2009/DecoyDocumentsSECCOM09.pdf
- http://seclists.org/focus-ids/2003/Feb/95

Counter-OSINT:

- A fake LinkedIn profile, Facebook page, email addresses published on corporate website (can be hidden in HTML comments so not visible from usual visitors), fake "leaked credentials" on pastebin, fake DB dumps posted on underground forums, etc. can increase visibility on how the attacker found his/her targets.
- Fake password hash loaded in memory to detect password stealers like Mimikatz.

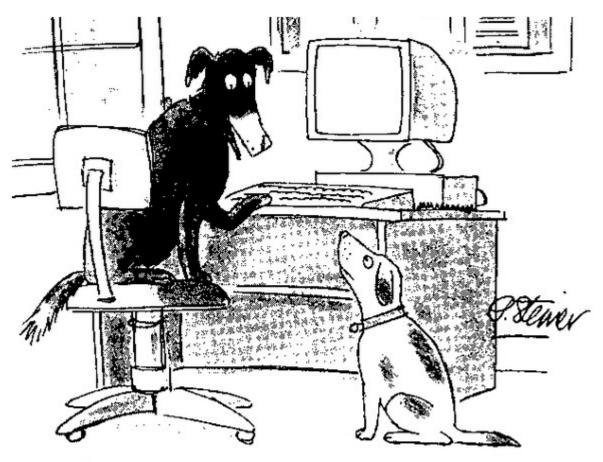
Counter-OSINT:

- Register a domain which name is similar to your corporate domain name
 - Ex.: my-bank.co instead of my-bank.com
 - Install a HTTP honeypot that reproduces the look & feel of a legitimate webmail
 - Wait for "someone" from "somewhere" that will try to log in to perform "some things". DNS WHOIS can be either fake or real.
 - Same tactic can be applied to a fake webcam associated with a unused public address from your own range.

How?

Critical points

- Monitor/Collect/Store Data
- Allow/Forbid/Restrict access to the Internet
- Do you hide your honeypot or do you make it public (DNS domain, public IP, etc)?


Collecting Data

You'll have to answer this question:
 "How can I monitor an intruder with privileged access (aka: root/administrator|system users rights) without being detected/defeated?

Internet Access

 What kind of Internet access will you grant from the honeypot? If Internet access is too limited, the intruder can find no interest in staying any longer.

Avoid Detection

"On the Internet, nobody knows you're a pot"

BREAKING HONEYPOTS FOR FUN AND PROFIT

We will detect, bypass, and abuse honeypot technologies and solutions, turning them against the defender. We will also release a global map of honeypot deployments, honeypot detection vulnerabilities, and supporting code.

The concept of a honeypot is strong, but the way honeypots are implemented is inherently weak, enabling an attacker to easily detect and bypass them, as well as make use of them for his own purposes. Our methods are analyzing the network protocol completeness and operating system software implementation completeness, and vulnerable code.

As a case study, we will concentrate on platforms deployed in real organizational networks, mapping them globally, and demonstrating how it is possible to both bypass and use these honeypots to the attacker's advantage.

PRESENTED BY

Dean Sysman & Gadi Evron & Itamar Sher

Skills

What skills do you need?

- Network Forensics
- System Forensics
- Reverse Engineering
- Data Analysis
- Coding

Future challenges

How to deal with "multi-path" attacks?

- Exploitation of a web application vulnerability to steal system's credentials or to inject a web-shell
- Access to the same compromised machine through SSH or RDP

Honeypots Arsenal

High-Interaction Server-Side Honeypots

- Argos
- HiHAT
- SSH: Bifrozt, DockPot, HonSSH

Low-Interaction Server-Side Honeypots

- General purpose: Dionaea, Honeyd, Honeytrap
- Web Application: Glastopf, GoogleHack Honeypot
- SSH: Kippo/Cowrie
- Scada: ConPot
- VoIP: Atermisa
- Sinkholes: HoneySink
- USB: Ghost USB honeypot

High-Interaction Client-Side Honeypots

- Shelia
- Capture-HPC NG

Low-Interaction Client-Side Honeypots

- Thug
- PhonyeC

Hybrid Honeypots

- HoneySpider
- SURFcert IDS
- SSH: Bifrozt

"OTS" Honeypots

http://www.honeynet.org/project

Other Tools

- APKInspector: static analysis platform for android applications.
- Cuckoo Sandbox: automated dynamic analysis sandbox. Powering malwr.com website.
- Droidbox: dynamic analysis platform for Android applications

First steps with a honeypot

Kippo

Kippo is a low-interaction server honeypot emulating the Secure Shell (SSH) service. It stores information about brute-force login attacks against the service and SSH session & actions the attacker launched against the server.

Kippo

According to ENISA:

"Kippo is extremely useful because, in addition to the detection of simple brute-force attacks against SSH, it also allows you to gather data from terminal session activity of an attacker in the emulated environment and to catch files downloaded by the attacker."

Dete	ection scope	Rating		Cost		Usefulness for CERT	
MULTI Multi-	Naviai formation	****	Excellent	\$	Low	66	Essential
	Multi-function	***	Good	\$\$	Medium		Useful
SPEC	Specialised	**	Fair	\$\$\$	High	8	Not useful
		*	Poor				

Version tested: 0.5

Date tested: 27 April 2012

Testing time: 24 hours

Website: http://code.google.com/p/kippo/

```
5
           pscan2
                                                vuln.txt
                        33
scam
                                                            ssh-scan
mfu.txt
            pass file
                        gen-pass.sh secure
a
www2:/var/tmp//gosh#./go
bash: ./go: command not found
www2:/var/tmp/ /gosh# ./go.sh 192
error while loading shared libraries: libgnome.so.32: cannot open shared object
file: No such file or directory
www2:/var/tmp//gosh# ./a 192.10
 {0,0}
 1)__)
 _11_11_
O RLY?
 {0,0}
 1)__)
 _11 _11 _
O RLY? ^C
www2:/var/tmp/ /gosh# w
 13:29:47 up 14 days, 3:53, 1 user, load average: 0.08, 0.02, 0.01
USER
         TTY
                  FROM
                                    LOGIN@
                                             IDLE
                                                    JCPU
                                                           PCPU WHAT
         pts/0
                  10.34.18.5
                                    13:25
                                             0.00s
                                                    0.00s
                                                           0.00s W
root
www2:/var/tmp//gosh#
```

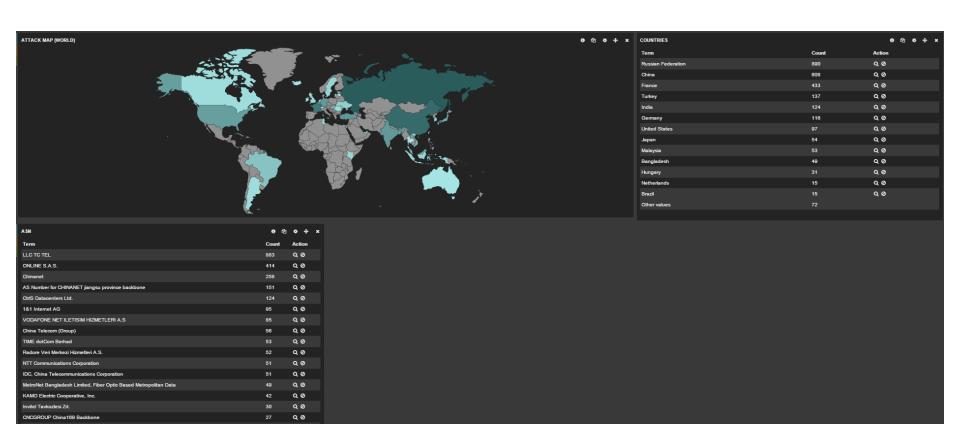
```
2010-12-08 14:54:31 (141 KB/s) - `allflood.tar' saved [265129/265129]
www2:/# tar -xzvf allflood.tar
flood/
flood/s12
flood/mad
flood/overdrop
flood/stealth
flood/stream
flood/v
flood/vadim
flood/gr
flood/smurf
flood/killer
flood/z0b
flood/s13
flood/stream c.c
flood/broadcast.tgz
www2:/# cd flood
www2:/flood# ./vadim 217.30.188.3 6500 0
Shall we play a game?
A strange game. The only winning move is not to play. How about a nice game of
chess?
www2:/flood# ./vadim 217.30.188.3 6500 0
```

Cowrie

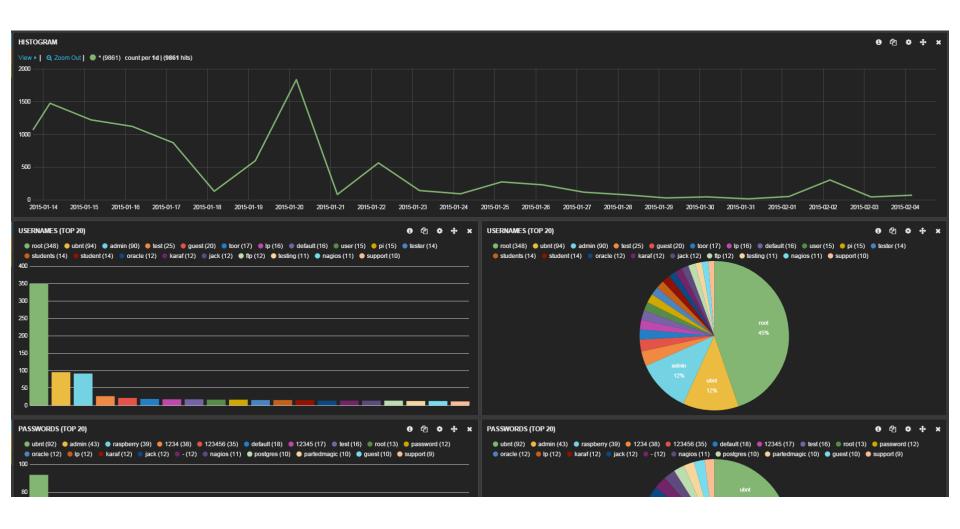
- Kippo's developement stopped 2 years ago.
- Cowrie is developed by Michel Oosterhof and is based on Kippo.
- https://github.com/micheloosterhof/cowrie

Cowrie Features

- Fake filesystem resembling a Debian 5.0 installation with the ability to add/remove files.
- Possibility of adding fake file contents so the attacker can cat files such as /etc/passwd.
- Cowrie saves files downloaded with wget/curl or uploaded with SFTP and scp for later inspection


Cowrie Features

- SFTP and SCP support for file upload
- Support for SSH exec commands
- Logging of direct-tcp connection attempts (ssh proxying)
- Forward SMTP connections to SMTP Honeypot
- Logging in JSON format for easy processing in log management solutions
- Many, many additional commands


Kibana Dashboards

Kibana Dashboards

Kibana Dashboards

GREETINGS PROFESSOR FALKEN. SHALL WE PLAY A GAME?

Glastopf

Glastopf is a low-interaction server honeypot for web applications. It is able to emulate vulnerabilities and gather information about incoming attacks. Its working principle is to respond to the attacker in accordance with his expectations, in order to provoke an attack.

Glastopf was founded by Lukas Rist. https://github.com/mushorg/glastopf

Glastopf

Glastopf supports multistage attacks. It has a builtin PHP sandbox for code injection emulation. It can be run standalone in its own Python web server or via WSGI. It has modular architecture, which allows it to attract attacks targeting any web application.

DETECTION SCOPE	ACCURACY OF EMULATION	QUALITY OF COLLECTED DATA	SCALABILITY AND PERFORMIANCE	RELIABILITY	EXTENSIBILITY	EASE OF USE AND SETTING UP	EMBEDDABILITY	SUPPORT	COST	USEF ULNESS FOR CERT
SPEC	****	***	**	***	****	***	***	****	\$	⊕

Detection scope		Rating		Cost		Usefulness for CERT		
MULTI	Multi-function	****	Excellent	\$	Low	6	Essential	
		***	Good	\$\$	Medium		Useful	
SPEC	Specialised	**	Fair	\$\$\$	High	8	Not useful	
		*	Poor					

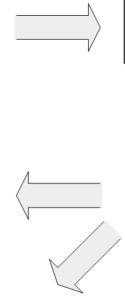
GREETINGS PROFESSOR FALKEN. SHALL WE PLAY A GAME?

An Industrial Control System Honeypot

```
# conpot --template default
  Version 0.5.1
  MushMush Foundation
2015-11-08 11:24:02,150 Starting Conpot using template: /usr/local/lib/python2.7/dist-packages/Conpot-0.5.0
2015-11-08 11:24:02,150 Starting Conpot using configuration found in: /usr/local/lib/python2.7/dist-package
2015-11-08 11:24:02,291 Fetched xxx.xxx.xxx as external ip.
2015-11-08 11:24:02,295 Found and enabled ('modbus', <class conpot.protocols.modbus.modbus_server.ModbusSer
2015-11-08 11:24:02,299 Conpot S7Comm initialized
2015-11-08 11:24:02,299 Found and enabled ('s7comm', <class 'conpot.protocols.s7comm.s7 server.S7Server'>)
2015-11-08 11:24:02,300 Found and enabled ('http', <class 'conpot.protocols.http.web_server.HTTPServer'>) p
2015-11-08 11:24:02,301 Found and enabled ('snmp', <class 'conpot.protocols.snmp.snmp_server.SNMPServer'>)
2015-11-08 11:24:02,302 Conpot Bacnet initialized using the /usr/local/lib/python2.7/dist-packages/Conpot-0
2015-11-08 11:24:02,303 Found and enabled ('bacnet', <class 'conpot.protocols.bacnet.bacnet server.BacnetSe
```

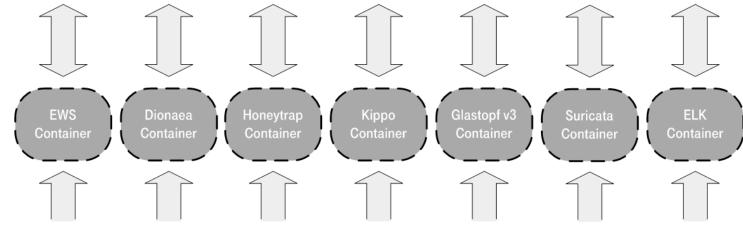
2015-11-08 11:24:02,305 Conpot IPMI initialized using /usr/local/lib/python2.7/dist-packages/Conpot-0.5.0-p 2015-11-08 11:24:02,305 Found and enabled ('ipmi', <class 'conpot.protocols.ipmi.ipmi_server.IpmiServer'>)

2015-11-08 11:24:02,305 No proxy template found. Service will remain unconfigured/stopped.

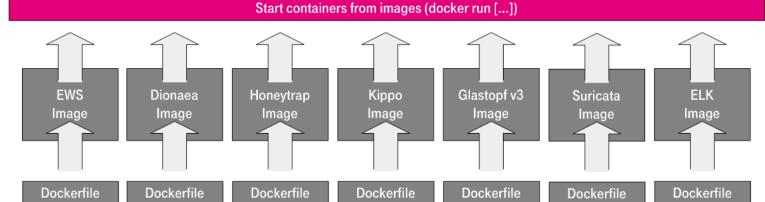

2015-11-08 11:24:02,305 Modbus server started on: ('0.0.0.0', 502)
2015-11-08 11:24:02,306 S7Comm server started on: ('0.0.0.0', 102)
2015-11-08 11:24:02,306 HTTP server started on: ('0.0.0.0', 80)
2015-11-08 11:24:02,461 SNMP server started on: ('0.0.0.0', 161)
2015-11-08 11:24:02,462 Bacnet server started on: ('0.0.0.0', 47808)
2015-11-08 11:24:02,462 IPMI server started on: ('0.0.0.0', 623)

2015-11-08 11:24:07,307 Privileges dropped, running as "nobody:nobody"

2015-11-08 11:24:02,304 IPMI BMC initialized.



So run 'em all!


Containers provide volatile data volumes (-v /[hpname])

Containers are volatile by design (unless commited to a new image)
 Data Volumes allow for file sharing among containers
 Stores events, logs, configs, ews token etc.

EWS config & aggregated logs provided thru host volume /data/ews/

Flags set to disabled for hpfeeds and malware scanning (must be enabled by user)

Build Docker Images with individual Dockerfiles (docker build -t [imagename].)

Docker Host @ 4GB RAM, 80GB free diskspace
Ubuntu Server 14.04.2, x64 – unattended installation from usb stick
SSH service disabled, user / pw = tsec / tsec (forced pw change)

References

- **The Cuckoo's Egg**: Tracking a Spy Through the Maze of Computer Espionage Clifford Stoll
- An Evening With Berferd http://www.cheswick.com/ches/papers/berferd.pdf
- There Be Dragons -

https://www.usenix.org/legacy/publications/library/proceedings/sec92/full_papers/bellovin.pdf

- The Honeynet Project https://honeynet.org
- Proactive detection of security incidents II Honeypots -

https://www.enisa.europa.eu/publications/proactive-detection-of-security-incidents-II-ho neypots

- Breaking Honeypots for Fun and Profit https://lab.dsst.io/32c3-slides/7277.html
- Cowrie SSH/Telnet Honeypot https://github.com/micheloosterhof/cowrie
- Glastopf Web Application Honeypot http://glastopf.org
- Conpot ICS/SCADA honeypot https://github.com/mushorg/conpot
- An awesome list of honeypot resources https://github.com/glaslos/awesome-honeypots
- HoneyDrive https://bruteforcelab.com/honeydrive
- **T-Pot: A Multi-Honeypot Platform** http://dtag-dev-sec.github.io/mediator/feature/2015/03/17/concept.html

