
Automatic Exploit 
Generation

an Odyssey

Sophia D’Antoine
Hack.lu 2015 



Introduction

Programs have become increasingly difficult 
to exploit 
- larger, changing surface area
- mitigations
- more bytes to siphon through 
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Introduction

Reaction: 
people get smarter and tools get better

- pentesters

- government research 

- CTF!
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CTF & Wargames
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The Past 

Manual labor
- static analysis 
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- dynamic analysis



Dynamic Analysis

Definition: 
- Running it (concrete execution)
- Collecting/ observing environment changes 

Popular Uses:
- dump VM memory & grep
- record/ replay & manual analysis
- gdb (debuggers) & run
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Dynamic Analysis

Common tools:
- gdb, windbg, cdb
- python brute force (blind fuzzing)
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Example: Dynamic Analysis
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Automated Exploitation



Agenda

1. Intro
2. Automating Exploitation

a. what, how?
b. the target

3. Program Analysis
a. background
b. types we care about  
c. how this helps with AEG

4. Application
a. tools
b. demo

5. Conclusion
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- Focus on discovery and combination of write and read 
primitives

Some Background

What is Automated Exploitation? 
The ability to generate a successful computer attack with 
reduced or entirely without human interaction. 

- Existing AE work focused on Restricted Models: 
- Sean Heelan’s “Automatic Generation of Control Flow Hijacking 

Exploits for Software Vulnerabilities” 
- David Brumley (@ Carnegie Mellon) et al. (AEG, MAYHEM, etc) 
- Cyber Grand Challenge! (CGC)

- Focus on discovery and combination of write and read 
primitives

- Focus on discovery and combination of write and read 
primitives
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Break up AEG into 2 parts:
- Generating input to get to vulnerability
- Generating “payload” to profit from vulnerability 

Automating Exploitation

- Both are hard
- Work being done in 

both areas
- Focus today on 

first problem
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TARGET?
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Automating Exploitation



AEG - pwnable.kr

Program Operations

Get random binary, pwn it in 10 seconds.

1) Takes input at argv[1] 
2) Does some decode & operations on it
3) Calls sequence of 16 functions
4) Each function checks 3 characters of input 

sequentially
5) If you pass them all, you get to the exploitable 

memcpy!

Automated Exploit Generation

1) Generate input to get to vulnerability
2) Generate payload to exploit and get shell
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AEG - pwnable.kr

fail ...

input 
argv[1]

3 
checks

... 15 more 
functions ...

memcpy

fail ...
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How can AEG solve for 
this path in the CFG?



Software Program Analysis!



Agenda

1. Intro
2. Automating Exploitation

a. what, how?
b. the target

3. Program Analysis
a. background
b. types we care about  
c. how this helps with AEG

4. Application
a. tools
b. demo

5. Conclusion
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The process of automatically analyzing the 
behavior of applications

What is program analysis

- set of paths == expected paths

- minimum expense => expected paths

- In terms of a property:
- program correctness

- program optimization
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How This Helps with AEG

Analysis helps us hunt for bugs 
automatically.

- Fuzzing/ Instrumenting
- Symbolic Execution
- Concolic Execution

==> Pro move: combine analyses  
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Types we care about.



Dynamic Binary Instrumentation

Definition:
- ‘Hijacked’ environment, binaries, or source
- Monitor specific system artifacts
- Attempts at complete (concrete) execution 

Popular Uses:
- Force program states
- Gather and report observations at runtime
- Types of hooking: source & binary
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Example: DBI

$pin -t inscount0.so -- binary

[BINARY LEVEL]

- Inject increment after each instruction

[STILL BRUTE FORCE]

- Return total instructions for fuzzed input 
- Only true for that 1 executed path 

(the possible CFG space may be very large)
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icount++ 

sub $0xff, %edx 

icount++ 

cmp %esi, %edx 

icount++ 

jle 

icount++ 

mov $0x1, %edi 

icount++ 

add $0x10, %eax

sub $0xff, %edx 

cmp %esi, %edx 

jle 

mov $0x1, %edi 

add $0x10, %eax

Example: DBI
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Symbolic Execution

Definition:
- Generate 1 sym path for a set of paths 

(could still be extremely expensive)
- Satisfies path conditions 
- Composed of some concrete values

-Popular Uses:
- Determine program state at particular basic block 
- Create ‘equation’ to feed to SAT/SMT solvers
- Faster than brute forcing all conditions
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Example: Symbolic Execution

[INT] a, b, c
[INT] x, y, z = 0; 

fun( int a, b, c ){
if (a) { 

x = -2;
}

if (b < 5) { 
if (!a && c) { 

y = 1; 
} 
z = 2;

}
assert(x+y+z!=3)

}

. . .
fun( 0, 3, 1 );
. . .

Old Method: 
Try all inputs until assert

[WARNING] inputs unbounded!
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Example: Symbolic Execution

[SYMBOL] a, b, c
[INT] x, y, z = 0; 

if (a) { 
x = -2;

}

if (b < 5) { 
if (!a && c) { 

y = 1; 
} 
z = 2;

}
assert(x+y+z!=3)
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Concolic Execution

Definition:
- Dynamic symbolic execution
- Instrumentation of symbolic execution as it runs
- One path at a time to maintain concrete state 

underneath symbolic variables
Popular Uses:
- Concretization 

(replace symbols with values to satisfy path condition)
- Handle system calls & library loading 
- Cases which SMT can’t solve
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Example: Concolic Execution

[INT] a, b, c
[INT] x, y, z = 0; 

fun( int a, b, c ){
if (a) { 

x = -2;
}

if (b < 5) { 
if (!a && c) { 

y = 1; 
} 
z = 2;

}
assert(x+y+z!=3)

}

. . .
fun( 0, 3, 1 );
. . .

Old Method:
Try all inputs until assert

[WARNING] inputs unbounded!
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Example: Concolic Execution

[INT & SYMBOL] a, b, c
[INT] x, y, z = 0; 

if (a) { 
x = -2;

}

if (b < 5) { 
if (!a && c) { 

y = 1; 
} 
z = 2;

}
assert(x+y+z!=3)

STEPS

[ONE] 
concrete execution of function

[TWO]
while building symbolic path model 

[THREE]
constraints on input are modeled 

[FOUR]
models used to generate concrete input
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Creating a Feedback Loop

In practice using the results of different 
analyses finds bugs quicker.

Example Pairing:
- Concrete execution
- Fuzz input
- Symbolic/ Concolic execution
- Examine results
- Craft new input
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Agenda

1. Intro
2. Automating Exploitation

a. what, how?
b. the target

3. Program Analysis
a. background
b. types we care about  
c. how this helps with AEG

4. Application
a. tools
b. demo

5. Conclusion
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Common tools:
- PIN Tool
- Valgrind (before/during runtime)
- DynamoRIO
- Qemu 
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Dynamic Binary Instrumentation



Example: Flare-on Challenge 9 

[ http://blog.trailofbits.com/2015/09/09/flare-on-reversing-challenges-2015/ ]
- Pintool instruction count
- More instructions == Closer to correct input
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Input: 
AAAAAAAA...

Input: 
FLAGAAAA...



Symbolic Execution

Common tools:
- KLEE (runs on LLVM bc)
- SAGE (MS internal tool)

feed it to z3 to solve
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Concolic Execution

Common tools:
- Angr
- Pysymemu
- Triton
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AEG Demo: Assumptions 

[ Assumptions ]
- Space of potential vulnerabilities too large
- Need to write tools to hunt for subset

- Target memory corrupt (memcpy)
- ROP from there…

[ Dynamically Acquire ]
- Path to target
- Solve for constraints
- Addresses of gadgets for ROP

[ Statically (Pre) Acquired ]
- Semantics of target & gadgets 
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LLVM Pass

Using the structure of the binary:
- Dominator Tree

- Longest path of CFG is the “winning” path  
- Use-def chain

- Each cmp of this path comprises the “constraints”

⇒ “Flow-sensitive constraint analysis"

LLVM:
- Makes this analysis easier

- DomTree & Use-def construction
- Semantics of cmp and vars easy to pull out
- Runs statically over bitcode (lift with Mcsema) 
- Fast
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Angr Script

… acquire binary & some conditions …. 
b = angr.Project("aeg")

ss = b.factory.blank_state(addr=entry_func)

ss.options.discard("LAZY_SOLVES")

ss.se._solver.timeout=10000

ss.memory.store(argv1_buff, ss.BV("input", 50*8))

pg = b.factory.path_group(ss, immutable=False)

angr.path_group.l.setLevel("DEBUG")

pg.explore(find=vuln_addr[0], avoid=fail_bbs)

argv1_win = pg.found[0].state.se.any_str(pg.found[0].state.memory.load(argv1_buff, 50))

#setup env

#fake input with no value

#target & bad branches, 4 speed

#solved for path to target, dump memory
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Demo



[ What We are (still) Working With ]
- Binaries
- Source is nice 

- Need to lift bins to IR for LLVM
- Most concolic exec. tools would need to compile it

Conclusion: The Future

[ Difficulty ]
- Know how to express our targeted vulnerability 
- Semantics for UAF, Memory Corruption, etc....
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Automatic program analysis
- translate program (IR)
- define program in-correctness

goal: proving existence or absence of 
bugs

Finding (More) Bugs 
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Any Questions?

IRC: quend 
email: sophia@trailofbits.com

10/22/2015 Automatic Exploit Generation 45/45

mailto:sophia@trailofbits.com

