
Automatic Exploit
Generation

an Odyssey

Sophia D’Antoine
Hack.lu 2015

Introduction

Programs have become increasingly difficult
to exploit
- larger, changing surface area
- mitigations
- more bytes to siphon through

10/22/2015 Program Analysis to Find Vulnerabilities 2/45

Introduction

Reaction:
people get smarter and tools get better

- pentesters

- government research

- CTF!

10/22/2015 Program Analysis to Find Vulnerabilities 3/45

CTF & Wargames

A
Binary

PWN
It

A
Flag

10/22/2015 Program Analysis to Find Vulnerabilities 4/45

The Past

Manual labor
- static analysis

10/22/2015 Program Analysis to Find Vulnerabilities 5/45

- dynamic analysis

Dynamic Analysis

Definition:
- Running it (concrete execution)
- Collecting/ observing environment changes

Popular Uses:
- dump VM memory & grep
- record/ replay & manual analysis
- gdb (debuggers) & run

10/22/2015 Program Analysis to Find Vulnerabilities 6/45

Dynamic Analysis

Common tools:
- gdb, windbg, cdb
- python brute force (blind fuzzing)

10/22/2015 Program Analysis to Find Vulnerabilities 7/45

step...

step...

step...

step...

step...

step...

step...

step...

step...

step...

step...

step...

step...

step...

step...
step...

step...

step...
step...

Example: Dynamic Analysis

10/22/2015 Program Analysis to Find Vulnerabilities 8/45

Automated Exploitation

Agenda

1. Intro
2. Automating Exploitation

a. what, how?
b. the target

3. Program Analysis
a. background
b. types we care about
c. how this helps with AEG

4. Application
a. tools
b. demo

5. Conclusion

10/22/2015 Automatic Exploit Generation 10/45

- Focus on discovery and combination of write and read
primitives

Some Background

What is Automated Exploitation?
The ability to generate a successful computer attack with
reduced or entirely without human interaction.

- Existing AE work focused on Restricted Models:
- Sean Heelan’s “Automatic Generation of Control Flow Hijacking

Exploits for Software Vulnerabilities”
- David Brumley (@ Carnegie Mellon) et al. (AEG, MAYHEM, etc)
- Cyber Grand Challenge! (CGC)

- Focus on discovery and combination of write and read
primitives

- Focus on discovery and combination of write and read
primitives

10/22/2015 Program Analysis to Find Vulnerabilities 11/45

Break up AEG into 2 parts:
- Generating input to get to vulnerability
- Generating “payload” to profit from vulnerability

Automating Exploitation

- Both are hard
- Work being done in

both areas
- Focus today on

first problem

10/22/2015 Program Analysis to Find Vulnerabilities 12/45

TARGET?

10/22/2015 Automatic Exploit Generation 13/45

Automating Exploitation

AEG - pwnable.kr

Program Operations

Get random binary, pwn it in 10 seconds.

1) Takes input at argv[1]
2) Does some decode & operations on it
3) Calls sequence of 16 functions
4) Each function checks 3 characters of input

sequentially
5) If you pass them all, you get to the exploitable

memcpy!

Automated Exploit Generation

1) Generate input to get to vulnerability
2) Generate payload to exploit and get shell

10/22/2015 Program Analysis to Find Vulnerabilities 14/45

AEG - pwnable.kr

fail ...

input
argv[1]

3
checks

... 15 more
functions ...

memcpy

fail ...

10/22/2015 Program Analysis to Find Vulnerabilities 15/45

How can AEG solve for
this path in the CFG?

Software Program Analysis!

Agenda

1. Intro
2. Automating Exploitation

a. what, how?
b. the target

3. Program Analysis
a. background
b. types we care about
c. how this helps with AEG

4. Application
a. tools
b. demo

5. Conclusion

10/22/2015 Automatic Exploit Generation 18/45

The process of automatically analyzing the
behavior of applications

What is program analysis

- set of paths == expected paths

- minimum expense => expected paths

- In terms of a property:
- program correctness

- program optimization

10/22/2015 Program Analysis to Find Vulnerabilities 19/45

How This Helps with AEG

Analysis helps us hunt for bugs
automatically.

- Fuzzing/ Instrumenting
- Symbolic Execution
- Concolic Execution

==> Pro move: combine analyses

10/22/2015 Program Analysis to Find Vulnerabilities 20/45

Types we care about.

Dynamic Binary Instrumentation

Definition:
- ‘Hijacked’ environment, binaries, or source
- Monitor specific system artifacts
- Attempts at complete (concrete) execution

Popular Uses:
- Force program states
- Gather and report observations at runtime
- Types of hooking: source & binary

10/22/2015 Program Analysis to Find Vulnerabilities 22/45

Example: DBI

$pin -t inscount0.so -- binary

[BINARY LEVEL]

- Inject increment after each instruction

[STILL BRUTE FORCE]

- Return total instructions for fuzzed input
- Only true for that 1 executed path

(the possible CFG space may be very large)

10/22/2015 Program Analysis to Find Vulnerabilities 23/45

icount++

sub $0xff, %edx

icount++

cmp %esi, %edx

icount++

jle

icount++

mov $0x1, %edi

icount++

add $0x10, %eax

sub $0xff, %edx

cmp %esi, %edx

jle

mov $0x1, %edi

add $0x10, %eax

Example: DBI

10/22/2015 Program Analysis to Find Vulnerabilities 24/45

Symbolic Execution

Definition:
- Generate 1 sym path for a set of paths

(could still be extremely expensive)
- Satisfies path conditions
- Composed of some concrete values

-Popular Uses:
- Determine program state at particular basic block
- Create ‘equation’ to feed to SAT/SMT solvers
- Faster than brute forcing all conditions

10/22/2015 Program Analysis to Find Vulnerabilities 25/45

Example: Symbolic Execution

[INT] a, b, c
[INT] x, y, z = 0;

fun(int a, b, c){
if (a) {

x = -2;
}

if (b < 5) {
if (!a && c) {

y = 1;
}
z = 2;

}
assert(x+y+z!=3)

}

. . .
fun(0, 3, 1);
. . .

Old Method:
Try all inputs until assert

[WARNING] inputs unbounded!

10/22/2015 Program Analysis to Find Vulnerabilities 26/45

Example: Symbolic Execution

[SYMBOL] a, b, c
[INT] x, y, z = 0;

if (a) {
x = -2;

}

if (b < 5) {
if (!a && c) {

y = 1;
}
z = 2;

}
assert(x+y+z!=3)

10/22/2015 Program Analysis to Find Vulnerabilities 27/45

Concolic Execution

Definition:
- Dynamic symbolic execution
- Instrumentation of symbolic execution as it runs
- One path at a time to maintain concrete state

underneath symbolic variables
Popular Uses:
- Concretization

(replace symbols with values to satisfy path condition)
- Handle system calls & library loading
- Cases which SMT can’t solve

10/22/2015 Program Analysis to Find Vulnerabilities 28/45

Example: Concolic Execution

[INT] a, b, c
[INT] x, y, z = 0;

fun(int a, b, c){
if (a) {

x = -2;
}

if (b < 5) {
if (!a && c) {

y = 1;
}
z = 2;

}
assert(x+y+z!=3)

}

. . .
fun(0, 3, 1);
. . .

Old Method:
Try all inputs until assert

[WARNING] inputs unbounded!

10/22/2015 Program Analysis to Find Vulnerabilities 29/45

Example: Concolic Execution

[INT & SYMBOL] a, b, c
[INT] x, y, z = 0;

if (a) {
x = -2;

}

if (b < 5) {
if (!a && c) {

y = 1;
}
z = 2;

}
assert(x+y+z!=3)

STEPS

[ONE]
concrete execution of function

[TWO]
while building symbolic path model

[THREE]
constraints on input are modeled

[FOUR]
models used to generate concrete input

10/22/2015 Program Analysis to Find Vulnerabilities 30/45

Creating a Feedback Loop

In practice using the results of different
analyses finds bugs quicker.

Example Pairing:
- Concrete execution
- Fuzz input
- Symbolic/ Concolic execution
- Examine results
- Craft new input

10/22/2015 Program Analysis to Find Vulnerabilities 31/45

Agenda

1. Intro
2. Automating Exploitation

a. what, how?
b. the target

3. Program Analysis
a. background
b. types we care about
c. how this helps with AEG

4. Application
a. tools
b. demo

5. Conclusion

10/22/2015 Automatic Exploit Generation 32/45

Common tools:
- PIN Tool
- Valgrind (before/during runtime)
- DynamoRIO
- Qemu

10/22/2015 Program Analysis to Find Vulnerabilities 33/45

Dynamic Binary Instrumentation

Example: Flare-on Challenge 9

[http://blog.trailofbits.com/2015/09/09/flare-on-reversing-challenges-2015/]
- Pintool instruction count
- More instructions == Closer to correct input

10/22/2015 Program Analysis to Find Vulnerabilities 34/45

Input:
AAAAAAAA...

Input:
FLAGAAAA...

Symbolic Execution

Common tools:
- KLEE (runs on LLVM bc)
- SAGE (MS internal tool)

feed it to z3 to solve

10/22/2015 Program Analysis to Find Vulnerabilities 35/45

Concolic Execution

Common tools:
- Angr
- Pysymemu
- Triton

10/22/2015 Program Analysis to Find Vulnerabilities 36/45

AEG Demo: Assumptions

[Assumptions]
- Space of potential vulnerabilities too large
- Need to write tools to hunt for subset

- Target memory corrupt (memcpy)
- ROP from there…

[Dynamically Acquire]
- Path to target
- Solve for constraints
- Addresses of gadgets for ROP

[Statically (Pre) Acquired]
- Semantics of target & gadgets

10/22/2015 Program Analysis to Find Vulnerabilities 37/45

LLVM Pass

Using the structure of the binary:
- Dominator Tree

- Longest path of CFG is the “winning” path
- Use-def chain

- Each cmp of this path comprises the “constraints”

⇒ “Flow-sensitive constraint analysis"

LLVM:
- Makes this analysis easier

- DomTree & Use-def construction
- Semantics of cmp and vars easy to pull out
- Runs statically over bitcode (lift with Mcsema)
- Fast

10/22/2015 Program Analysis to Find Vulnerabilities 38/45

Angr Script

… acquire binary & some conditions ….
b = angr.Project("aeg")

ss = b.factory.blank_state(addr=entry_func)

ss.options.discard("LAZY_SOLVES")

ss.se._solver.timeout=10000

ss.memory.store(argv1_buff, ss.BV("input", 50*8))

pg = b.factory.path_group(ss, immutable=False)

angr.path_group.l.setLevel("DEBUG")

pg.explore(find=vuln_addr[0], avoid=fail_bbs)

argv1_win = pg.found[0].state.se.any_str(pg.found[0].state.memory.load(argv1_buff, 50))

#setup env

#fake input with no value

#target & bad branches, 4 speed

#solved for path to target, dump memory

10/22/2015 Program Analysis to Find Vulnerabilities 39/45

Demo

[What We are (still) Working With]
- Binaries
- Source is nice

- Need to lift bins to IR for LLVM
- Most concolic exec. tools would need to compile it

Conclusion: The Future

[Difficulty]
- Know how to express our targeted vulnerability
- Semantics for UAF, Memory Corruption, etc....

10/22/2015 Program Analysis to Find Vulnerabilities 41/45

Automatic program analysis
- translate program (IR)
- define program in-correctness

goal: proving existence or absence of
bugs

Finding (More) Bugs

10/22/2015 Program Analysis to Find Vulnerabilities 42/45

Acknowledgements
- Trail of Bits
- RPISEC

10/22/2015 Automatic Exploit Generation 43/45

References
[Good Course Material]
https://www.cs.umd.edu/class/spring2013/cmsc631/lectures/symbolic-exec.pdf
https://www.utdallas.edu/~zxl111930/spring2012/public/lec4.pdf
http://web.mit.edu/16.399/www/lecture_01-intro/Cousot_MIT_2005_Course_01_4-1.pdf
http://homepage.cs.uiowa.edu/~tinelli/classes/seminar/Cousot.pdf

[Site for Tool Documentation]
https://github.com/angr/angr-doc
https://github.com/llvm-mirror/llvm

[Other Good Resources]
http://www.grammatech.com/blog/hybrid-concolic-execution-part-1
http://openwall.info/wiki/_media/people/jvanegue/files/aegc_vanegue.pdf

10/22/2015 Automatic Exploit Generation 44/45

https://www.cs.umd.edu/class/spring2013/cmsc631/lectures/symbolic-exec.pdf
https://www.cs.umd.edu/class/spring2013/cmsc631/lectures/symbolic-exec.pdf
https://www.utdallas.edu/~zxl111930/spring2012/public/lec4.pdf
https://www.utdallas.edu/~zxl111930/spring2012/public/lec4.pdf
http://web.mit.edu/16.399/www/lecture_01-intro/Cousot_MIT_2005_Course_01_4-1.pdf
http://web.mit.edu/16.399/www/lecture_01-intro/Cousot_MIT_2005_Course_01_4-1.pdf
http://homepage.cs.uiowa.edu/~tinelli/classes/seminar/Cousot--A%20Tutorial%20on%20AI.pdf
http://homepage.cs.uiowa.edu/~tinelli/classes/seminar/Cousot--A%20Tutorial%20on%20AI.pdf
https://github.com/angr/angr-doc
https://github.com/angr/angr-doc
https://github.com/llvm-mirror/llvm
https://github.com/llvm-mirror/llvm
http://www.grammatech.com/blog/hybrid-concolic-execution-part-1
http://www.grammatech.com/blog/hybrid-concolic-execution-part-1
http://openwall.info/wiki/_media/people/jvanegue/files/aegc_vanegue.pdf
http://openwall.info/wiki/_media/people/jvanegue/files/aegc_vanegue.pdf

Any Questions?

IRC: quend
email: sophia@trailofbits.com

10/22/2015 Automatic Exploit Generation 45/45

mailto:sophia@trailofbits.com

