DEBUGGING HTC PHONES
BOOTLOADERS

HBOOTDBG
22/10/2013 - HACKLU 201

WHO ARE WE?

e Cédric Halbronn - @saidelike
» 4 years at Sogeti ESEC Lab
= \Worked on Windows Mobile, iPhone, Android
security
» Focusing on vulnerability research & exploitation

e Nicolas Hureau - @kalenz
= New recrue at Sogeti ESEC Lab
= Likes low-level stuff

WHAT IS A BOOTLOADER?

» Piece of code first executed when turning on your
phone

Turn on -2 s

—
your phone
Bootrom HBOOT .
. ‘ (PEL) H SBL "‘{AFFEEL} H Android \

BOOTLOADER GOAL

e |nitializing hardware

e Loading Google operating system (Android)

e Restore device factory state (if Android gets
corrupted)

e Update the phone

REASONS TO LOOK INTO BOOTLOADERS?

e Unlocking the bootloader and rooting your device
» Permanent root of your device
» |[nstall custom ROM (eg: Cyanogenmod)

e Understanding how bootloaders really work
e Very old code, good potential for vulnerabilities

e Evaluating the physical security risks
» \What does an attacker get access to?

ABOUT THIS TALK

 Debugging HTC phones bootloader

DI g= N =

AGENDA

Revolutionary vulnerability
HBOOT debugger

Simple bug

Conclusion

U AW

AGENDA

Basics
Revolutionary vulnerability
HBOOT debugger

. Simple bug
. Conclusion

WHAT IS HBOOT?

 The bootloader of HTC Android phones

e Used on all HTC phones
= Desire, Desire S, Desire Z, One, etc.

e Controlled by HTC

e Different branded Android phone = different
bootloader
(eg: Samsung, Motorola, etc.)

GETTING TO KNOW HBOOT

e Closed sources
= HTC code base, not Android

e 2 modes: HBOOT/FASTBOOT

e Helpful references
» Xda-developers.com

» tjworld.net
= unrevoked hboot-tools

http://www.xda-developers.com/
http://tjworld.net/
https://github.com/unrevoked/hboot-tools

VULNERABILITIES IN HBOOT?

e Used in unlocking tools
= unrevoked3 (deprecated)
AlphaRev (deprecated)
revolutionary: 15 HTC devices supported

Unlimited.lO: ~10 other HTC devices supported
rumrunner: HTC One

e read_emmc HBOOT command to read flash
memory

= HTC Desire Z (only?)

e XTC clip to S-OFF the device

http://unrevoked.com/
http://alpharev.nl/
http://revolutionary.io/
http://unlimited.io/
http://forum.xda-developers.com/showthread.php?t=2473644
http://esec-lab.sogeti.com/post/2011/05/22/Passcode-bypass-of-the-HTC-Desire-Z-using-an-hidden-feature-of-the-bootloader

TARGETED DEVICE

HTC Desire Z

Run on a Qualcomm MSM7230 (Snapdragon S2) SoC

» Baseband processor: ARM9

= Application processor: Scorpion (custom ARMv7/
design)

Release date: 2010

HBOOT version: 0.85

HTC SECURITY MODEL

| HBOOT —| Android |$§
_

fastboot flash “ Recovery “

o
Factury state: S-ON and LOCKED
Everything needs to be signed by HTC

$-(

“w‘ HBOOT —»

.

S-ON

Android

Recovery

These partitions have hardware
write-protections

::[

Yw ‘ HBOOT —»

.

S-OFF

Android

Recovery

All partitions are writable
from rooted Android

HTC SECURITY FLAG

e Everything must be signed by HTC

e HBOOT does not allow to flash unsigned Android

ROM (zip)

e HBOOT does not allow to run unsigned code (NBH
file)

e HBOOT write-protects system / hboot partitions
during boot
= |t is hardware-locked (S-ON flag)

= Even a root vulnerability does NOT allow to write
partitions

LOCKED

‘ HBOOT F—»

.

LOCKED

Android

Recovery

Only signed firmware can be flashed
over HBOOT

|

‘ HBOOT F—»

.

UNLOCKED

Android

Recovery

Unsigned firmware can be flashed
over HBOOT

HTC LOCK/UNLOCK

HTC allows us to unlock our device (htcdev.com)
Unlock allows HBOOT to flash an unsigned system
partition

= HTC keeps control on HBOOT (we keep S-ON)

From a security perspective, unlock forces a factory

reset

» Attacker can not access your data (wipe)
(theorically)

BUT after unlocking your device
= Attacker could make HBOOT load unsigned code
and potentially access your data

GETTING HBOOT BINARY

e HTC proprietary code
 Windows update package
» RUU.exe contains a rom.zip file. Content of the

rom.zip file

boot.img: Android kernel
hboot XYZ.nbO: HBOOT bootloader <- what we are looking for
radio.img: Baseband code

recovery.img: Recovery kernel
system.img: System partition
userdata.img: Data partition

e Static analysis (IDA Pro). Raw ARM code

DUMPING HBOOT IN RAM

e |DA not following some code paths
» Because of uninitialized memory structures

e |nitialized context = get more info on how it really

works
 Need to get code execution to read memory

snapshot

GETTING CODE EXECUTION IN HBOOT

e Unlock = flash custom Android

= Not possible to load unsigned code

e S-OFF the device with XTC clip + load unsigned NBH
binary?
= Would be after HBOOT execution

e Exploit a vulnerability in HBOOT?
= Unlock exploits = good candidates to analyze
= Revolutionary tool

U AW

AGENDA

Revolutionary vulnerability
HBOOT debugger

. Simple bug
. Conclusion

REVOLUTIONARY

e 15 supported HTC devices

e HTC Desire Z not officially supported
= But HBOOT still vulnerable

e Analyzed version: 0.4pre4

INTERNAL STEPS

1. Temporary "root" of the phone (zergRush)
2. Rewrite "misc" partition from Android
3. Reboot phone in HBOOT
e "fastboot getvar:mainver" = flash patched HBOOT

'FASTBOOT GETVAR' HANDLER

e fastboot getvar:mainver

void fastboot getvar(char* var)

{
char buf[64];

fastboot getvar handler(var, buf);
usb send(buf)

}

void fastboot getvar handler(char* var, char* buf)

{

if (!strcmp(var, "mainver"))

{

sprintf(buf, "%s", fastboot getvar mainver()));
} else {

'FASTBOOT GETVAR' HANDLER

e "misc" partition writable from rooted Android
» Possible to rewrite the main version

o After reboot in HBOOT

= Stack-based buffer overflow = code execution

GETTING CODE EXECUTION IN HBOOT
(CONTINUE)

e Coming back to what interests us
= Dump HBOOT memory

e Send code implementing read/write memory
primitives

» Using reqgular "fastboot download" command

e Trigger revolutionary exploit to get code execution
= Dump whole memory to have HBOOT memory
context

WHAT ABOUT DEBUGGING?

e Static analysis = take time
 Would be helpful to have dynamic analysis tools
 Would look at specific behaviors
= Command parsing, package update, Android
loading, etc.

e Requirements
= Get code execution: OK
= Communication between phone and computer:
TODO

COMMUNICATION

e HBOOT/FASTBOOT exposes a serial console over
USB

e Several commands
= |[nteresting ones

getvar <variable> display a bootloader variable

download [len:hexbinary] send data to the download area
oem custom manufacturer commands

= "download" not implemented in fastboot computer
binary
e Hook one of these commands
» fastboot oem

U AW N

AGENDA

Basics
Revolutionary vulnerability
HBOOT debugger

. Simple bug
. Conclusion

DEBUGGER

e Code execution in HBOOT + communication: OK
= debugger implementation

e Requirements
= Read/write memory: OK (code execution)
» Breakpoints: TODO

BREAKPOINT IN ARM

e ARM "bkpt" instruction
 When hitting a breakpoint
» CPU triggers an exception: sets DBGDSCR.MOE to
"BKPT instruction debug event"”
» Branch at offset OxC (prefetch abort)

0x04
0x8D003238 MOV RS, R1 ‘ Undefined instruction
Ox8D0B323C MOV R1, #aVersion

0x8D003244 BKPT 0x08 .
Ox8D003248 CMP RO, #0 Software interrupt
x8D000324C ... 0x0C
Prefetch abort
0x10

0x8D003230 STMFD SP!, {R4-R6,LR}
0x8D003234 MOV R4, RO
0

BREAKPOINT HANDLING IN HBOOT

e By default, no exception vector table in HBOOT

= |[nstall our own handler: no need to check
DBGDSCR.MOE

= Setup abort stack

e Save context (registers) to restore them after

handling

BREAKPOINT HANDLING IN HBOOT

Bx8D003230
Dx8D003234
Ox8D003238
Bx8D00323C
Bx8D003244
Bx8D003248

STMFD SP!, {R4-R6,LR}

MOV R4,
MOV R5,
MOV R1,

RO
R1
#aVersion

BKPT
CMP RO,

Ox8D00324C ...

#0

Oxﬂﬂ
Reset
0x04
Undefined instruction
0x08
Software interrupt
0x0C
Prefetch abort
0x10
Data abort
0x14
Reserved
0x18
IRQ
0x1C
FIQ

| prefetch _abort handler

dbg event handler

breakpoint handler

GDB

DEBUGGER

e Debugger on the phone: OK = need a debugger
client
e Requirements
= Read/write memory: OK (code execution)
» Breakpoints: OK (hook prefetch abort)
= Debugger client: TODO

GDBPROXY.PY

e Script interfacing GDB and debugger in HBOOT
= Works as a GDB server (RSP protocol)
» And a client for the debugger

« Any GDB client applies: arm-gdb, IDA Pro, etc.

DEBUGGER

e Requirements
= Read/write memory: OK (code execution)
» Breakpoints: OK (hook prefetch abort)
= Debugger client: OK (any gdb client)

DEBUGGER ARCHITECTURE

Frontend (PC) Backend (smartphone)
HBOOT
GDB ARM
hbootdbg
RSP T
(serial|over TCP)
= Oem
: (I
Fastboot Fastboot
gdbproxy.py (serial over USB) > > handler

e Target similarities: design inspired by gcombbdbg

SUMMARY

e Revolutionary exploit to inject code (fastboot
getvar:mainver)
e Communication with debugger (hook fastboot oem)
e Frontend
» Python script proxying requests from GDB to
backend
o Handle GDB RSP and our debugger protocol
= Read/write memory & registers
» Add/delete breakpoints
 Backend: injected code
» Hook exception vector: prefetch abort
o Called when BKPT instruction decoded
= Simple software breakpoints

WHAT ABOUT USING OUR DEBUGGER?

e Basic debugger implementation: OK
e Using our debugger: TODO

D

AGENDA

Basics

Revolutionary vulnerability
HBOOT debugger

Simple bug

. Conclusion

FINDING A NON HARMFUL BUG

e I[n HBOOT mode = hboot> prompt
= hboot> & "fastboot oem”
= Execute commands

e Enter the following 2 commands
s 'A*256 + \n + 'B"*256 + \t\n
= Phone not responding anymore

e How are commands parsed?

PARSING HBOOT COMMANDS

char current cmd[256];
char previous cmd[256];
void hboot command line() {
unsigned int len = 0;
char* buf = current cmd;
char* current char;
while (1) {
if ('usb read(buf, 1))
break;
current_char = *buf;
switch (current char)
{
case ‘\n':
*pbuf = '\0';
strcpy(previous cmd, current cmd);
hboot handle(current cmd);
case '\t':
*pbuf = ' *;
strcpy(buf, previous cmd);
len = strlen(buf)
buf += len;

PARSING HBOOT COMMANDS

rrrrrrr

PARSING HBOOT COMMANDS

current

test\n

previous test

PARSING HBOOT COMMANDS

<+

PARSING HBOOT COMMANDS

current

kKey\t

previous test

PARSING HBOOT COMMANDS

current

keytest

previous

test

PARSING HBOOT COMMANDS

current

keytest\n

S —
keytest

previous

PARSING HBOOT COMMANDS

Read one character at a time into a 256-byte buffer

If "end of command" (\n)

» Save first buffer into second buffer and handle
command

If "tabulation" (\t)

= Copy second buffer at first buffer end

ldea behind '\t' feature

= First buffer: current command

= Second buffer: saved command

= Append previous command to prompt with
tabulation

PROBLEM IN COMMANDS PARSING

 When using tabulation
» No check that current command buffer big
enough to append previous command
e Overflow the buffer of the current command

 What is really happening? = Using our debugger
= Note: Debugger conflicts with command console,
need to switch between them

DEMO

Analyzing the problem with our debugger

PARSING HBOOT COMMANDS

current

bbbbbbbbbbbbb
bbbbbbbbbbbbb
bbbbbbbbbbbbb

R —
ddddddddd

previous

-

e Destination buffer increased when strcpy
e Source and destination buffer adjacents
» Source buffer increases as well = strcpy loops
infinitely :(

U AW N

AGENDA

Basics
Revolutionary vulnerability
HBOOT debugger

. Simple bug
. Conclusion

CONCLUSION

Functional debugger

Reverse engineering to find a bug

= Using the debugger = not exploitable on its own
HBOOT command parsing improvable

Debugger source code should be released soon

FUTURE WORK

e Revolutionary vulnerability fixed on recent devices
(eg: HTC One with HBOOT 1.44)

e Port debugger using another vulnerability (eg:
rumrunner)
= Look at how rumrunner works
» Buy a HTC One ;)

e Continue our analysis of HBOOT

THANK YOU FOR YOUR ATTENTION

cedric.halbronn@sogeti.com - @saidelike
nicolas.hureau@sogeti.com - @kalenz

