
DEBUGGING HTC PHONES
BOOTLOADERS

HBOOTDBG
22/10/2013 - HACK.LU 2013

Cédric Halbronn, Nicolas Hureau

WHO ARE WE?
Cédric Halbronn - @saidelike

4 years at Sogeti ESEC Lab
Worked on Windows Mobile, iPhone, Android
security
Focusing on vulnerability research & exploitation

Nicolas Hureau - @kalenz
New recrue at Sogeti ESEC Lab
Likes low-level stuff

WHAT IS A BOOTLOADER?
Piece of code first executed when turning on your
phone

BOOTLOADER GOAL
Initializing hardware
Loading Google operating system (Android)
Restore device factory state (if Android gets
corrupted)
Update the phone

REASONS TO LOOK INTO BOOTLOADERS?
Unlocking the bootloader and rooting your device

Permanent root of your device
Install custom ROM (eg: Cyanogenmod)

Understanding how bootloaders really work

Very old code, good potential for vulnerabilities
Evaluating the physical security risks

What does an attacker get access to?

ABOUT THIS TALK
Debugging HTC phones bootloader

AGENDA
1.
2.
3.
4.
5.

Basics
Revolutionary vulnerability
HBOOT debugger
Simple bug
Conclusion

AGENDA
1. Basics
2. Revolutionary vulnerability
3. HBOOT debugger
4. Simple bug
5. Conclusion

WHAT IS HBOOT?
The bootloader of HTC Android phones
Used on all HTC phones

Desire, Desire S, Desire Z, One, etc.
Controlled by HTC
Different branded Android phone ⇒ different
bootloader
(eg: Samsung, Motorola, etc.)

GETTING TO KNOW HBOOT
Closed sources
⇒ HTC code base, not Android

2 modes: HBOOT/FASTBOOT

Helpful references
xda-developers.com
tjworld.net
unrevoked hboot-tools

http://www.xda-developers.com/
http://tjworld.net/
https://github.com/unrevoked/hboot-tools

VULNERABILITIES IN HBOOT?
Used in unlocking tools

 (deprecated)
 (deprecated)

: 15 HTC devices supported
: ~10 other HTC devices supported

: HTC One

 HBOOT command to read flash
memory

HTC Desire Z (only?)

XTC clip to S-OFF the device

unrevoked3
AlphaRev
revolutionary
Unlimited.IO
rumrunner

read_emmc

http://unrevoked.com/
http://alpharev.nl/
http://revolutionary.io/
http://unlimited.io/
http://forum.xda-developers.com/showthread.php?t=2473644
http://esec-lab.sogeti.com/post/2011/05/22/Passcode-bypass-of-the-HTC-Desire-Z-using-an-hidden-feature-of-the-bootloader

TARGETED DEVICE

HTC Desire Z
Run on a Qualcomm MSM7230 (Snapdragon S2) SoC

Baseband processor: ARM9
Application processor: Scorpion (custom ARMv7
design)

Release date: 2010
HBOOT version: 0.85

HTC SECURITY MODEL

S-ON

HTC SECURITY FLAG
Everything must be signed by HTC
HBOOT does not allow to flash unsigned Android
ROM (zip)
HBOOT does not allow to run unsigned code (NBH
file)
HBOOT write-protects system / hboot partitions
during boot

It is hardware-locked (S-ON flag)

⇒ Even a root vulnerability does NOT allow to write
partitions

LOCKED

HTC LOCK/UNLOCK
HTC allows us to unlock our device (htcdev.com)
Unlock allows HBOOT to flash an unsigned system
partition

HTC keeps control on HBOOT (we keep S-ON)

From a security perspective, unlock forces a factory
reset

Attacker can not access your data (wipe)
(theorically)

BUT after unlocking your device
⇒ Attacker could make HBOOT load unsigned code
and potentially access your data

GETTING HBOOT BINARY
HTC proprietary code
Windows update package

RUU.exe contains a rom.zip file. Content of the
rom.zip file

Static analysis (IDA Pro). Raw ARM code

boot.img: Android kernel
 hboot_XYZ.nb0: HBOOT bootloader <- what we are looking for
 radio.img: Baseband code
 recovery.img: Recovery kernel
 system.img: System partition
 userdata.img: Data partition

DUMPING HBOOT IN RAM
IDA not following some code paths

Because of uninitialized memory structures

Initialized context ⇒ get more info on how it really
works
Need to get code execution to read memory
snapshot

GETTING CODE EXECUTION IN HBOOT
Unlock ⇒ flash custom Android

Not possible to load unsigned code

S-OFF the device with XTC clip + load unsigned NBH
binary?

Would be after HBOOT execution

Exploit a vulnerability in HBOOT?
Unlock exploits = good candidates to analyze
⇒ Revolutionary tool

AGENDA
1. Basics
2. Revolutionary vulnerability
3. HBOOT debugger
4. Simple bug
5. Conclusion

REVOLUTIONARY
15 supported HTC devices
HTC Desire Z not officially supported

But HBOOT still vulnerable
Analyzed version: 0.4pre4

INTERNAL STEPS
1. Temporary "root" of the phone (zergRush)
2. Rewrite "misc" partition from Android
3. Reboot phone in HBOOT

"fastboot getvar:mainver" ⇒ flash patched HBOOT

"FASTBOOT GETVAR" HANDLER
fastboot getvar:mainver
void fastboot_getvar(char* var)
 {
 char buf[64]; //stack-based buffer
 fastboot_getvar_handler(var, buf);
 usb_send(buf)
 }

 void fastboot_getvar_handler(char* var, char* buf)
 {
 if (!strcmp(var, "mainver"))
 {
 //get main version from "misc" partition
 sprintf(buf, "%s", fastboot_getvar_mainver()));
 } else {
 //...
 }

"FASTBOOT GETVAR" HANDLER
"misc" partition writable from rooted Android

Possible to rewrite the main version
After reboot in HBOOT

Stack-based buffer overflow ⇒ code execution

GETTING CODE EXECUTION IN HBOOT
(CONTINUE)

Coming back to what interests us
Dump HBOOT memory

Send code implementing read/write memory
primitives

Using regular "fastboot download" command
Trigger revolutionary exploit to get code execution
⇒ Dump whole memory to have HBOOT memory
context

WHAT ABOUT DEBUGGING?
Static analysis ⇒ take time
Would be helpful to have dynamic analysis tools
Would look at specific behaviors

Command parsing, package update, Android
loading, etc.

Requirements
Get code execution: OK
Communication between phone and computer:
TODO

COMMUNICATION
HBOOT/FASTBOOT exposes a serial console over
USB
Several commands

Interesting ones

"download" not implemented in fastboot computer
binary

Hook one of these commands
fastboot oem

getvar <variable> display a bootloader variable
download [len:hexbinary] send data to the download area
oem custom manufacturer commands

AGENDA
1. Basics
2. Revolutionary vulnerability
3. HBOOT debugger
4. Simple bug
5. Conclusion

DEBUGGER
Code execution in HBOOT + communication: OK
⇒ debugger implementation

Requirements
Read/write memory: OK (code execution)
Breakpoints: TODO

BREAKPOINT IN ARM
ARM "bkpt" instruction
When hitting a breakpoint

CPU triggers an exception: sets DBGDSCR.MOE to
"BKPT instruction debug event"
Branch at offset 0xC (prefetch abort)

BREAKPOINT HANDLING IN HBOOT
By default, no exception vector table in HBOOT

Install our own handler: no need to check
DBGDSCR.MOE
Setup abort stack

Save context (registers) to restore them after
handling

BREAKPOINT HANDLING IN HBOOT

DEBUGGER
Debugger on the phone: OK ⇒ need a debugger
client
Requirements

Read/write memory: OK (code execution)
Breakpoints: OK (hook prefetch abort)
Debugger client: TODO

GDBPROXY.PY
Script interfacing GDB and debugger in HBOOT

Works as a GDB server (RSP protocol)
And a client for the debugger

Any GDB client applies: arm-gdb, IDA Pro, etc.

DEBUGGER
Requirements

Read/write memory: OK (code execution)
Breakpoints: OK (hook prefetch abort)
Debugger client: OK (any gdb client)

DEBUGGER ARCHITECTURE

Target similarities: design inspired by qcombbdbg

SUMMARY
Revolutionary exploit to inject code (fastboot
getvar:mainver)
Communication with debugger (hook fastboot oem)
Frontend

Python script proxying requests from GDB to
backend

Handle GDB RSP and our debugger protocol
Read/write memory & registers
Add/delete breakpoints

Backend: injected code
Hook exception vector: prefetch abort

Called when BKPT instruction decoded
Simple software breakpoints

WHAT ABOUT USING OUR DEBUGGER?
Basic debugger implementation: OK
Using our debugger: TODO

AGENDA
1. Basics
2. Revolutionary vulnerability
3. HBOOT debugger
4. Simple bug
5. Conclusion

FINDING A NON HARMFUL BUG
In HBOOT mode ⇒ hboot> prompt

hboot> ⇔ "fastboot oem"
Execute commands

Enter the following 2 commands
'A'*256 + \n + 'B'*256 + \t\n
Phone not responding anymore

How are commands parsed?

PARSING HBOOT COMMANDS
char current_cmd[256];
char previous_cmd[256];
void hboot_command_line() {
 unsigned int len = 0;
 char* buf = current_cmd;
 char* current_char;
 while (1) {
 if (!usb_read(buf, 1)) //read one character
 break;
 current_char = *buf;
 switch (current_char)
 {
 case '\n':
 *buf = '\0'; //breakpoint 1
 strcpy(previous_cmd, current_cmd); //breakpoint 3
 hboot_handle(current_cmd);
 case '\t':
 *buf = ' '; //breakpoint 2
 strcpy(buf, previous_cmd);
 len = strlen(buf)
 buf += len;
 //...

PARSING HBOOT COMMANDS

PARSING HBOOT COMMANDS

PARSING HBOOT COMMANDS

PARSING HBOOT COMMANDS

PARSING HBOOT COMMANDS

PARSING HBOOT COMMANDS

PARSING HBOOT COMMANDS
Read one character at a time into a 256-byte buffer
If "end of command" (\n)

Save first buffer into second buffer and handle
command

If "tabulation" (\t)
Copy second buffer at first buffer end

Idea behind '\t' feature
First buffer: current command
Second buffer: saved command
Append previous command to prompt with
tabulation

PROBLEM IN COMMANDS PARSING
When using tabulation

No check that current command buffer big
enough to append previous command

Overflow the buffer of the current command

What is really happening? ⇒ Using our debugger
Note: Debugger conflicts with command console,
need to switch between them

DEMO
Analyzing the problem with our debugger

PARSING HBOOT COMMANDS

Destination buffer increased when strcpy
Source and destination buffer adjacents

Source buffer increases as well ⇒ strcpy loops
infinitely :(

AGENDA
1. Basics
2. Revolutionary vulnerability
3. HBOOT debugger
4. Simple bug
5. Conclusion

CONCLUSION
Functional debugger
Reverse engineering to find a bug

Using the debugger ⇒ not exploitable on its own
HBOOT command parsing improvable

Debugger source code should be released soon

FUTURE WORK
Revolutionary vulnerability fixed on recent devices
(eg: HTC One with HBOOT 1.44)
Port debugger using another vulnerability (eg:
rumrunner)

Look at how rumrunner works
Buy a HTC One :)

Continue our analysis of HBOOT

THANK YOU FOR YOUR ATTENTION
cedric.halbronn@sogeti.com - @saidelike

nicolas.hureau@sogeti.com - @kalenz

