
Abusing Dalvik
Beyond Recognition

Jurriaan Bremer

Who?

Jurriaan Bremer
• Freelance Security Researcher
• Student (University of Amsterdam)
• Interested in Mobile Security & Low-level stuff

– Core Developer of Cuckoo Sandbox
(http://cuckoosandbox.org/)

– Author of Open Source ARMv7 Disassembler
(http://darm.re/)

– Blog (http://jbremer.org/)

• Eindbazen CTF Team, The Honeynet Project

http://cuckoosandbox.org/
http://darm.re/
http://jbremer.org/

What?

Why?

• Broken stuff is good stuff

• New ways to mess with analysis

• Break analysis tools

• To have fun.. 

Android Introduction

• Android phones (usually) run ARMv7

• Based on a heavily modified Linux kernel

• An application is an APK – a Zip file
– Contains metadata: signatures, android manifest, etc

– Code, Images, Data, ..

• Applications’ code
– Mainly written in Java, but may contain native cod

– Dalvik: Android’s Java Virtual Machine

– All code goes in to classes.dex (the Dex file format)

Dex File Format

• Simple File Header

• Various Data Pools
– Compact Data Structures

• Fixed-length lookup tables

– Represent one thing each
• Strings, Data Types

• Field/Method definition

• Data section
– Variable-length information

– E.g., the actual Dalvik code

Dex File Format: Strings

ULEB128: Compact storage for small 32-bit ints

Utilizes 1 up to 5 bytes:

• 42 1 byte (0x2a)

• 1337 2 bytes (0xb9 0x0a)

• 0xffffffff 5 bytes (0xff 0xff 0xff 0xff 0x0f)

string_id_item = in string_id pool

string_data_item = in data section

Strict verifier of the Dex File Format

• Enforces a lot of rules

– See the Dex specification
(http://source.android.com/devices/tech/dalvik/dex-format.html)

Both documented & undocumented
E.g., manual states map_list is optional – it’s not.

DexOpt

Manual:

libdex:

DexOpt

Many strict rules, including, e.g.:

• No more padding than required
– Extra byte of padding? Shame on you!

• Padding must consist of zeroes only

• Entries in the Data Pools must be unique
– May not define the same string twice

• Entries in the Data Pools must be sorted
– string “a” comes before string “b”

– type 42 comes before type 1337

Dalvik 101

public static void hello() {

 System.out.println(“Hello Hack.lu”);
}

sget-object v0, System;->out:PrintStream;

const-string v1, ”Hello Hack.lu”

invoke-virtual v0, v1, PrintStream;->println(String;)V

return-void

Dalvik 102

• Register-based Instruction Set
– Allocates a fixed-size amount of registers for a function
– More efficient than Java’s stack-based instruction set

• Various General Purpose Instructions
– Move, add, subtract, multiply, etc

• Fixed branches
– No “jump register”, only “goto $+30” and alike

• Class, Static and Array get/put instructions
– To read/write class members & array indices

• Special: Switch/case, array-length, const-string, ..

DexOpt Continued

Strict verification of Dalvik Bytecode

• All branches must point to valid Bytecode
– Checks for out-of-bounds code access

• Type checking
– Objects can’t do arithmetic

– Strings can’t perform the “array-length” instruction

– Can’t “invoke-static” a virtual method

– Argument count & types must match prototypes
• E.g., prototype (Lfoo;II)V requires 3 parameters

(One foo object and two integers – method has no return value.)

“Parser Differentials”

• Term coined by Meredith Patterson, Len
Sassaman, Sergey Bratus et al

– N parsers with 1 input, 1..N different interpretations

– Parser/Docs inconsistency leads to “funny” stuff

• map_list is a Parser Differential

– Not a very interesting one though..

– Hint hint.. ;-)

Straight from the Documentation

“Parser Diff..WAIT WHAT?!?!”

libdex/DexFile.h:

oo/Object.h:

Dex vs ODex

• ODex – Optimized Dex Files

– Created after verifying Dex file

– Various optimizations (CPU-wise)

• Our Dex is not an ODex file

– CLASS_ISOPTIMIZED|CLASS_ISPREVERIFIED

– Well, thanks, eh?

• libdex doesn’t verify Dex vs ODex

– To be continued.

Now what?

We can mark a class “verified & optimized”

• DexOpt will then.. set a status field:

• Followed by a check:

Abuse ALL the Dalvik

• We can now write not-so-strict Dalvik
– For all methods of a particular class

– No verification 

– Just set the class’ access_flags

• Possibilities in Dalvik
– Write “special” sequences of instructions

• Normally rejected during validation

– Use instructions available for ODex
• Optimized instructions

Goal: Run arbitrary Dalvik

• Input: Raw Dalvik Bytecode
– Most Dalvik instructions take {1..5} ushort’s

– Use a string with unicode “characters” (Bytecode)
• Each character represented as UTF-16 “code point”

• UTF-16 code points are 16-bits – like an ushort

• Task: Redirect Dalvik’s Program Counter
– To the string with our Bytecode

• Output: The return value
– After executing our raw Dalvik Bytecode 

Some Gadgets

We’re going to require some basic stuff

• Object address leak

– What is the address of our Object?

• Read arbitrary integer

– What is the value at this address?

• Write arbitrary integer

– Your address now contains my value! 

Gadgets: Object Address Leak

Can simply cast an Object as integer

(Now Type Checking is disabled )

// Invalid Java code, but closest estimation

// to our Bytecode

int address(Object obj) {

 return (int) obj;
}

Gadgets: Read Arbitrary Integer

• We use the “array-length” instruction

– Arrays, e.g., int[] foo = new int[42];

– Arrays in Dalvik have their length at offset +8

• Our read_int32 function

– Subtract 8 from the address

– Perform “array-length” on our address

– Return the “length”

Gadgets: Write Arbitrary Integer

• Usage of “iput-quick” instruction
– iput = Instance Put, set a field of an instance object

– E.g., this.foo = bar;

– v0 = bar, v1 = this 

– iput v0, v1, SomeClass;->foo:I

• Quick is the ODex version
– iput-quick v0, v1, #+4

– #+4 is the offset of field foo from this

– Can overwrite any “field” with iput-quick

Strings in Java

• String is a wrapper around char[]

– *(u32 *)(str + 8) = pointer to char[]

– (u16 *)(char[] + 16) = UTF-16 code points

• E.g., given string “Hack.lu \u1337”

– UTF-16 code points will look like:

Executing Arbitrary Dalvik

• We want to execute our Dalvik String
• Override the address of a virtual function
• Class layout:

– *(u32 *)(this + 0) = clazz object
– *(u32 *)(clazz + 112) = vtable_count
– *(u32 *)(clazz + 116) = vtable_pointer

• All classes inherit java.lang.Object
– Which defines a couple of virtual methods itself

• We create a custom class with 1 virtual method
– Our virtual method is located at index vtable_count-1

Executing Arbitrary Dalvik

• vtable: pointers to Method instances

• vm/mterp/armv5te/footer.S:

• vm/mterp/common/asm-constants.h:

• Pointer to Dalvik Bytecode at offset 32

Quick Pwn Summary

• Get an arbitrary String

– Locate its UTF-16 code points (our Bytecode)

• Create Object of a Class with a virtual method

– Get last vtable entry

– Overwrite Insns with the address to our Bytecode

• Call the virtual method:

– v0 = object instance

– invoke-virtual {v0}, SomeClass;->dummy_method

Demo o’clock

• Our Bytecode should return gracefully

– (It’s too easy to crash the emulator at this point..)

– We can even get its return value 

• Made a simple Application

– With a textbox, waiting for Bytecode

– A fancy button

– Shows the return value of the executed Bytecode

• Represented as integer below the button

Demo Time 

Bytecode Examples

$ py dalvik.py ‘0013 0539 000f’

0 const/16 v0, #0x539

2 return v0

$ py dalvik.py ‘0013 0539 00d8 0300 000f’

0 const/16 v0, #0x539

2 add-int/lit8 v0, v0, #+3

4 return v0

Real usage?

• We can put any Bytecode we want

– Including invalid Bytecode (just don’t invoke it)

– Breaks commonly used tools, big time

• Exercise for the reader

• We can run arbitrary Dalvik Bytecode

– No need to hardcode all our proprietary code

– Prevent easy analysis of your Application
• Because decompiling “normal” Dalvik into Java is damn easy

Future Work

Native Code Execution
• (Directly from within Dalvik, naturally)

• Definitely possible, but requires some work..

• Need to allocate RWX memory or use ROP
– Will probably want to parse /proc/self/maps

– Locate mmap() or mprotect()

• Set ACC_STATIC in access_flags for virtual
method
– Allows to jump to arbitrary ARMv7 code 

Future Work

• Self-decrypting Dalvik Bytecode
– Don’t run the entire Dalvik string right away

– Pass only chunks – mutate parts on-the-go

– Whatever you can think of..?

• Obfuscate the memory corruption gadgets
– Right now it’s pretty obvious..

• Exploit other built-in classes & features

• Modify the Dalvik VM itself
– Facebook “extended” the Dalvik VM for >64k methods

(invoke-* instructions normally take a 16-bit index.)

For fun: execute-inline

• Optimizations of a few dozen functions, e.g.:

• execute-inline {v0, v1, v2}, 42@inline
• Doesn’t do bounds checking
• Table is close to GOT

– Exposes some functions, e.g., memcpy, mmap :p

For Fun: invoke-super-quick

• Invokes the super method for a virtual method

• Takes a bit more time to setup
– Create a class A with a virtual method

– Create a class B which inherits class A

– Overwrite Insns address for A’s virtual method

– Call A’s virtual method from B’s with super

• More awesome 
– Doesn’t invoke a virtual method

– Invokes a super quick method 

Patch by Ben Gruver (JesusFreke)
(PoC still works on Android 4.3?!)

The End.

The Real End 

Thanks to: Alexandre Dulaunoy, Patrick Schulz, Rodrigo Chiossi,
Sergey Bratus, Valentin Pistol, ShiftReduce, Thomas Schreck,
Peter Geissler, Eindbazen CTF Team

Jurriaan Bremer
me@jbremer.org
@skier_t

