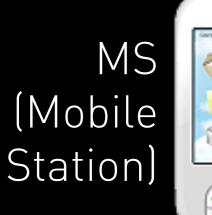
Wendell Crenshaw Technologies

presents

All Your Baseband Are Belong To Us

over-the-air exploitation of memory corruptions in GSM software stacks

Ralf-Philipp Weinmann


Laboratory for Algorithmics, Cryptology & Computer Security University of Luxembourg <u>https://cryptolux.org</u>

Outline

- GSM / Smartphone basics
- Baseband software (in)security
- Practicality of exploitation
- Demo
- Scenarios for the "baseband apocalypse"
- Disclosure, outlook & conclusions

Part I: GSM and smartphone basics

Lay of the GSM/UMTS land

links to outside world [BSCs, VLR, HLR/AUC, SS7]

Um (air) interface

BTS (base transceiver station) [Usually located at cell tower]

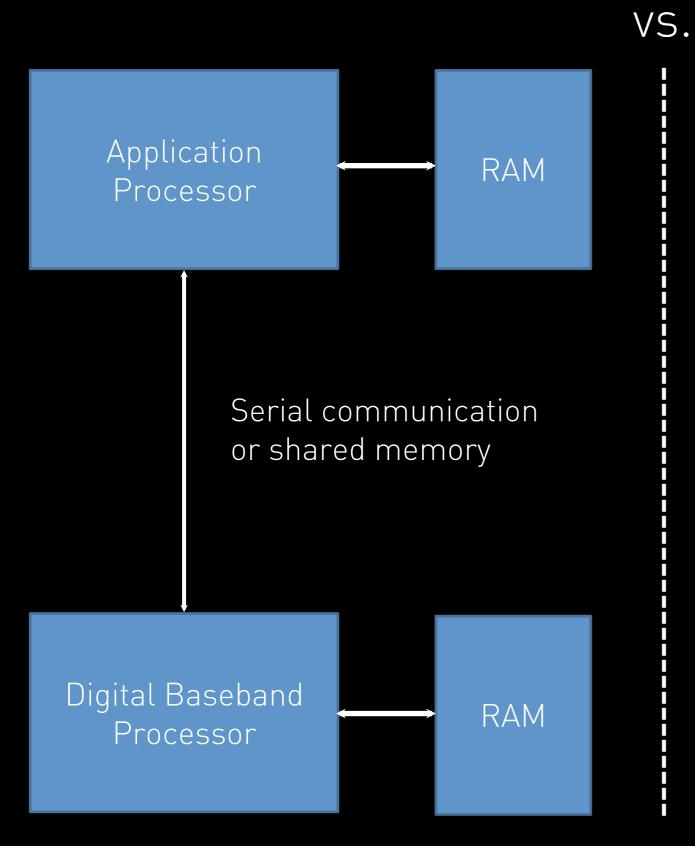
Layers of the GSM Um interface

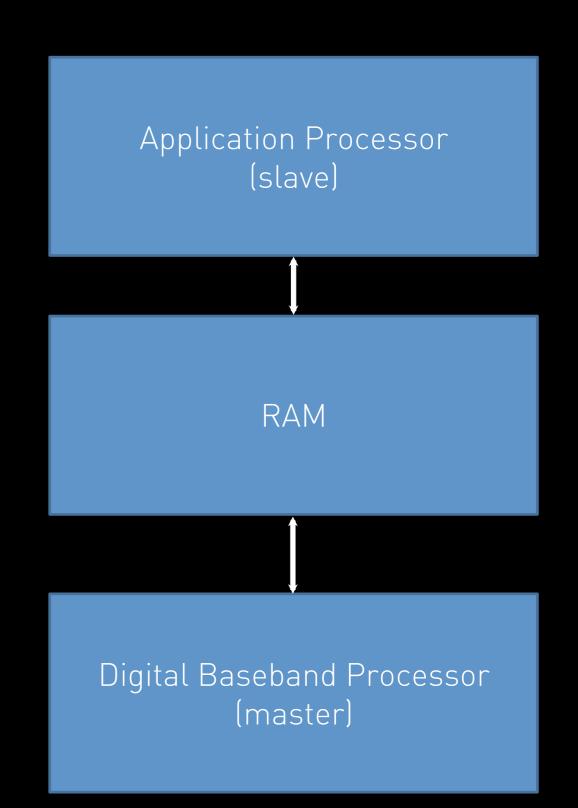
Connection Management (MM)

Mobility Management (MM)

Radio Resource (RR)

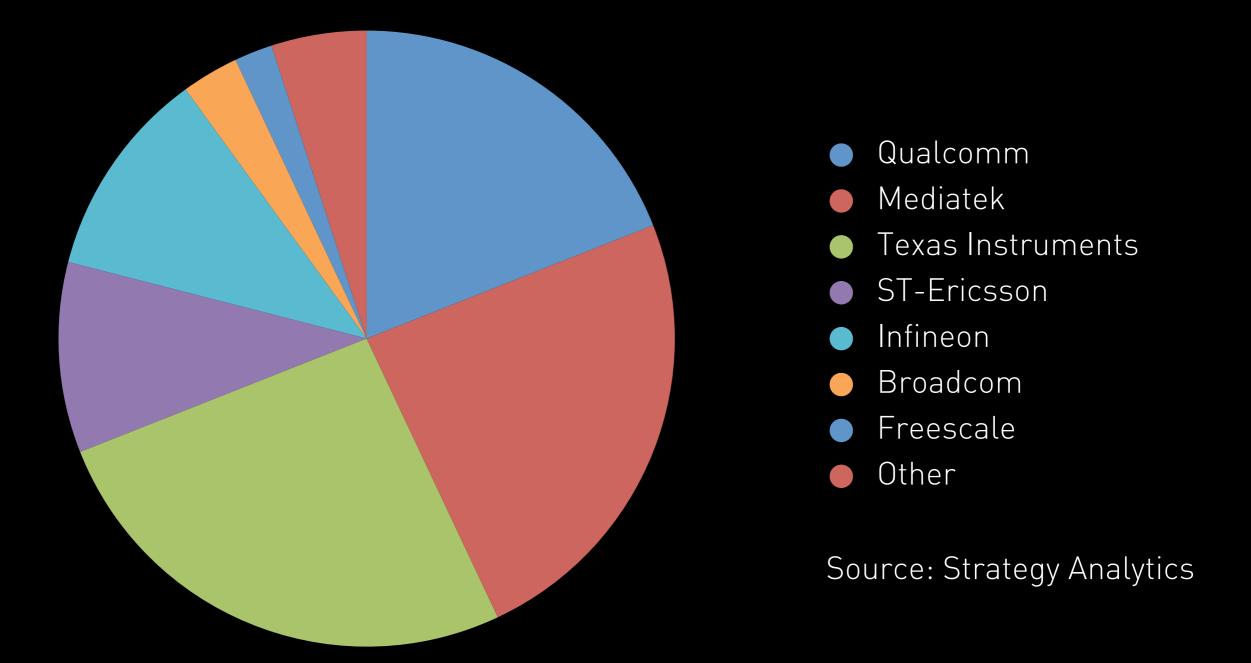
– Layer 3


LAPDm (Layer 2)


Layer 1

Smartphones

- Somewhen in the late 20th century, PDAs and cellular phones merged
- Result: smartphones
- Have driven PDAs into extinction
- Usually a multi-CPU architecture: application processor (APP) and baseband (BB) processor
- In 99% of all cases, ARM CPUs used for both
- <u>Trend:</u> single-chip APP/BB (for cost reasons)


Dominant Smartphone archs

Let's do some quick market research before we dive into the technical details...

Baseband market shares 3Q2009

Cellular Baseband Suppliers & their 3Q' 09 shipment share)

Part II: Baseband (in)security

Baseband (in)security

- Code base created in the 1990s...
- ... with a 1990s attitude towards security
- Network elements are considered trusted
- Both GSM and UMTS protocols have many, many length fields
- (Almost) no exploit mitigations
 [one counter-example: XMM6180 on iPhone4 has hardware DEP enabled]

I know you forgot what the GSM protocol stack looks like, so let's see it once more before we proceed.

Layers of the GSM Um interface

Connection Management (MM)

Mobility Management (MM)

Radio Resource (RR)

– Layer 3

LAPDm (Layer 2)

Layer 1

Where to look for bugs

- Layer 1 not fruitful
- Layer 2: messages to short
- Layer 3: specified in GSM 04.08

 –allows for variable length messages (TLV and LV)
 –Maximum length: 255 octets (length field: one octet)
- However: ASN.1 used as well (e.g. RRLP)
- GPRS layer very fruitful as well
 - -GPRS not supported by OpenBTS
 - -layer 1 different

Where to look for bugs

- Layer 1 not fruitful
- Layer 2: messages to short
- Layer 3: specified in GSM 04.08

 –allows for variable length messages (TLV and LV)
 –Maximum length: 255 octets (length field: one octet)
- However: ASN.1 used as well (e.g. RRLP)
- GPRS layer very fruitful as well
 - -GPRS not supported by OpenBTS
 - -layer 1 different

Where to look for bugs

• Layer 1 not fruitful

Things get interesting

- Layer 2: messages to short
- Layer 3: specified in GSM 04.08

 –allows for variable length messages (TLV and LV)
 –Maximum length: 255 octets (length field: one octet)
- However: ASN.1 used as well (e.g. RRLP)
- GPRS layer very fruitful as well
 - -GPRS not supported by OpenBTS
 - -layer 1 different

Initial Targets

Image credit: Yutaka Tsutano Apple iPhones (Infineon baseband)

Image credit: Jose A. Gelado HTC Dream [G1] (Qualcomm baseband)

Types of bugs found

- Many, many unchecked memory copies (can be found in binary once **memcpy ()** et al. identified)
- Object/structure lifecycle issues (e.g. use after free, uninitialized variables, state engine confusion), can lead to infoleaks as well
- Protocol foo-bars: Code paths normally used for UMTS / CDMA can be triggered using GSM frames

An example (in QCOM codebase)

- GSM & UMTS use challenge-response auth
- Originally: fixed-length challenge in GSM — 16 bytes RAND
- 3GPP specification 24.008 added variable length challenge (AUTN)
- Functionality not needed in GSM!
- Allows to overwrite stack (limit 251 bytes)
- Result: remote code exec, pre-auth
- QCOM fixed after disclosure (pushed to OEMs)

How were the bugs found?

- Fuzzing was not successful
 Lots of crashes, but no easy way to triage
- Static analysis
- Located memcpy () -like functions
- Identified functions handling GSM frames
 - Problem: apparently different tasks
 - Assertions/logging functions very helpful
- After several were found, looked at standards and went back

Baseband Exploitation

- Baseband: what operating system?
- Unlock teams often have good info on this (iPhone dev team, XDA developers)
- Locate buffers used for GSM L3 messages
- Write custom code or use existing features (e.g. AT+S0=x handler in Infineon baseband)
- Debugging is hard, write own debugger first!

The AT+S0=n feature

- Hayes command to turn on auto-answer
- present in some software stacks (verified for Infineon & QCOM)
- Enable with *5005*AANS# on iPhones, disable with #5005*AANS#
- Excellent target to demonstrate memory corruptions
- Auto-answer can be made silent/invisible

Part III: Practicality

Why should we care

- New base stations: expensive (cheapest: 25k USD)
- Old gear however often is sold on eBay
- Threat model has entirely changed: hardware has become cheap, open-source SW appeared
- Open-source projects for running GSM base stations: OpenBSC & OpenBTS
- OpenBTS provided service at Burning Man 2008-2010
- HAR2009 had OpenBSC test network

• Siemens BS11

- used by
 OpenBSC
- HEAVY
- E1/Abis interface
- cheap: EUR 250
- hard to come by now.

Image credit: Björn Heller

- ip.access
 nanoBTS
- supported by
 OpenBSC as well
- Abis over IPv4
- approx. USD 4500
- different versions for GSM900/1800, GSM850/1900
- supports GPRS

Our gear: Ettus USRPv1

price: approx
 USD 1250 plus
 good clock

- software defined radio (SDR)
- versatile (different daughterboards)
- OpenBTS support, GSM850/900, GSM1800/1900
- no GPRS since layer 1 is different there
- clock: wrong freq (64Mhz) and imprecise

Part IV: Demo

Common failures (my experience)

- Lacking clock precision
- Misinterpreting stack traces
- Triggering the wrong bug ;)
- Overlooking code is placed is non-exec page

Some words about clocks

- Get a good one, seriously!
 - GSM spec requires 0.05ppm
 - equiv. to 50Hz in 900MHz band
- Time is too precious for fixing clock issues
- Using FA-SY on the road (EUR 40)
 - Si570 based design
 - not optimal: 20ppm uncalibrated
 - approx. 1ppm when calibrated
- ClockTamer apparently much better

Part V: The Baseband Apocalypse

The "Baseband Apocalypse"

- Place fake BTS in crowded/sensitive areas: airport lounges, financial districts, near embassies
- Stealth room monitor: record audio, compress, store in RAM, piggy-back onto next data connection (mic/camera usually hang off BB CPU)
- Shared mem CPUs: compromise APP CPU as well, place backdoor/rootkit

The "Baseband Apocalypse"

- Ping-pong games: compromise cellphone, then BTS/BSC, infect more phones from there
- Brick phones permanently (e.g. erase SecZone on iPhone)
- No easy forensics possible in BB land (JTAG disabled to prevent easy unlocks). Need exploits to perform forensics

The scary bit

- How do we defend ourselves? Turn off our cell phones? Hardly.
- Use a sound-proof enclosure for phone and encrypting Bluetooth Headset?
 [approach allegedly used by a German company that produces "secure" end-to-end solutions for governments]

Is there still hope for the paranoid?

OsmocomBB

- Free Software GSM baseband stack
- implements layer 1-3
- target platform: Calypso chipsets
- present in OpenMoko phones and Motorola C11x/C12x (e.g. C123)
- current functionality: about GSM Phase 1
 - supports sending/receiving SMS
 - supports voice calls

Part VI: Disclosure, outlook, conclusions

Disclosure & Reactions

- QCOM was fantastic
- Working with Apple to get 1st issue in Infineon stack fixed, update for TMSI bug out soon.
- Vendor outreach by Microsoft
- ST-Ericsson:

"We have been using Coverity on our RTOS (incl. the entire L2/3 source code) for a few years – which may detect some of the vulnerabilities. And the canaries have always been there to enable the scheduler to detect stack overflows [...]"

Outlook

- Will see same problems for 3GPP/UMTS
- 3GPP uses mutual auth...
- Need Radio Resource Control (RRC) pre-auth
- RRC is about 1800 pages of specification!
- ASN.1 PER !!
- Only single vendor for the ASN.1 parser !!!
- Femto cells as cheap attack platforms
- LTE spec pre-auth simpler than 3GPP

Conclusions

- Memory corruptions over the Um interface: practical even with cheap hardware
- Vulnerabilities in GSM baseband codebases plentiful
- Small number of baseband vendors
- Malicious code execution on baseband CPU: compromises security
 - Shared memory between BB & APP: total compromise