
Rustock.C
When a myth comes true

Frank Boldewin
Hack.Lu 2008

2

Agenda

The family's history
How the myth started rolling
The hunt for answers
The loader
The beast itself

Protection layers
Inside the rootkit
The botnet user mode code

Lessons learned

3

The family's history

Rustock aka Spambot is able to send spam emails and
always used top notch rootkit techniques to hide its tracks
First version (Rustock.A) appeared in Nov 2005, followed by
Rustock.B in July 2006
Code maintained probably only by one Russian guy, who is
known as "pe386" or "ntldr" in the underground
From a reverse engineers point of view, this malware family
was always a challenging task and with every evolution
step also the degree of analyzing difficulty increased

How the myth started rolling

5

How the myth started rolling

In Oct 2007 some people reported that a new Rustock
version was seen in the wild
Unfortunately nobody was able to prove this assertion,
because of lack of a sample
After some weeks without success in hunting, most people
in the AV-industry claimed it to be myth...
At least for 8 months. However in May 2008 the AV-
company Dr. Web released a small article, giving a few
details about the inner workings of Rustock.c as well as a
snapshot showing a .pdb string

The hunt for answers

7

The hunt for answers

After some further days a few samples of Rustock.C made
the rounds and everyone in the industry started analyzing it
Unfortunately these samples crashed with a BSOD on every
box, right after starting the driver (We will see later why)
Further an unanswered question was its way of infection as
well as...
Where is the dropper code?
With help of BFK's huge malware DB it was easy to answer
the question for the dropper and its infection way
Recorded traffic revealed that Rustock.C spread through the
Iframe-Cash network aka Russian Business Network

The loader

9

Loader code protector properties

Spaghetti-code with polymorphic jumps, e.g.
MOV EDI, offset_18030 / ADD EDI, 0F2F25958h / JMP EDI
MOV ECX, 0E3242A4h / JMP DWORD PTR [ECX-0E30C17Ch]
MOV EBX, 0Ch / XCHG EBX, [ESP+EBX] / RETN 10h

RC4 crypted
aPLib packed
Unpacked code still spaghetti code structure combined with
deliberately unoptimized code, e.g.

MOV EAX,1234 -> XOR EAX,EAX / OR EAX,1200 / ADD EAX,34

Strings like registry paths or IP and port infos are runtime
assembled to prevent easy detection
TDI based kernel mode socket implementation is used for
communication
No extra antidebug, antidump, antivm ...

10

Loaders inner workings

Grabs several OS and PCI infos from victims system
OS infos are queried from registry
PCI infos like PCI to Host Bridge and PCI to ISA Bridge
are queried through low level IO port access (CF8/CFC)

Gathered infos are encrypted with TEA and then send to a
fake HTTPS server at 208.66.194.215
Server crypts the real Rustock.C driver with the victim
specific data and sends it back on the same channel
Loader starts the crypted driver and ends

11

Send data illustrated

Unencrypted

Encrypted

The beast itself

13

14

Protection layer 1

Easy polymorphic decrypter (Anti AV-signature measure)

15

Protection layer 2

Searches the NTOSKRNL base and stores it
Builds a checksum over its own buffer and encrypts
NTOSKRNL image base value with this DWORD
When trying to find NtQuerySystemInformation the
checksum gets recalculated and decrypts the stored
NTOSKRNL image base value. If someone changed the code
in the meantime, a wrong image base value leads to BSOD
Imports are found by using 32-bit hash values, instead of
function names
Allocates memory with ExAllocateMemoryPoolWithQuotaTag
and copies the majority of its code into this area and
directly jumps to layer 3

16

Protection layer 3

Overwrites DRx registers
DR0-3 (hardware breakpoint detection)
DR7 (kernel debugger detection)

2nd code checksum trick (modified code leads to BSOD)
Overwrites whole IDT table with fake handler, for the time of unpacking,
to disturb kernel debuggers, which hook INT1 (single stepping + hardware
breakpoints) and INT3 (software breakpoints))

Software BP checks (0xCC)
Query 8 bytes of PCI information from system (like the loader did)
Adds 1 dword pre-stored in the buffer and uses these 12 bytes as RC4
decryption key over all 5 PE-sections
After every PE-section decryption the buffer gets aPLib decompressed

17

Protection layer 3

If the 8 bytes of PCI information are different from original
ones, decryption fails and system crashes
Brute forcing the key depends on the machine power and
some luck while enumerating through the PCI
vendor/device table
To generate a more random key, 111 empty rounds after
RC4init is used
Imports rebuilding and auto section relocation are also
handled in this stage
Before jumping to the unpacked rootkit code the IDT gets
restored to its original state

Inside the rootkit

19

Inside the rootkit

Unpacked code still spaghetti code structure combined with
deliberately unoptimized code
Checks the presents of kernel debuggers

WinDbg (KdDebuggerEnabled)
String-scans in memory for NTICE + Syser traces

Registers a callback routine with
KeRegisterBugCheckCallback, which cleans its memory
when KeBugCheck happens
Code checksum routine
Software breakpoint checks (0xCC)

20

Inside the rootkit

Botnet usermode code, stored in the last PE section, gets
injected into winlogon.exe or services.exe under VISTA
Driver infector

Infects a random Microsoft driver listed in
HKLM\SYSTEM\CurrentControlSet\Control\Safeboot\Minimal registry
path
Rustock looks for version information strings inside the
binaries before infection (scans for “Microsoft Windows”)

Disinfection is time based, before it infects another MS
driver, but can be forced when trying to change an infected
binary

21

Inside the rootkit

NTOSKRNL hook at _KiFastCallEntry, a very smart way to control
all Nt/Zw variants of native functions
The hook is protecting usermode botnet component to hide its
threads and from being read, written, erased or terminated and to
have a communication channel through INT 2Eh, between both
rings
The following native functions are being hooked:

ZwQuerySystemInformation
ZwReadVirtualMemory
ZwWriteVirtualMemory
ZwProtectVirtualMemory
ZwCreateThread
ZwTerminateThread
ZwOpenThread
ZwDuplicateObject
ZwDelayExecution
ZwSetEvent
ZwSetInformationThread
ZwResumeThread
ZwTerminateProcess
ZwCreateUserProcess (only on VISTA)
ZwCreateThreadEx (only on VISTA)

22

Inside the rootkit

NTFS.SYS hooks to fake file size and to notice
read/writes on infected driver

_NtfsFsdWrite
_NtfsFsdRead
_NtfsFsdSetInformation
_NtfsFastQueryFSDInfo
_NtfsFsdClose
_NtfsFsdCreate
_NtfsFsdDispatchWait
_NtfsFsdDirectoryControl

In case of FAT32 the hooks are placed on FASTFAT.SYS

23

Inside the rootkit

To prevent local sniffing, also some hooks are placed on IP-
based drivers
TCPIP.SYS

_ARPSendData
_TCPDispatch
_TCPDispatchInternalDeviceControl
_ARPClose
_FreeARPInterface
_ARPRegister

WANARP.SYS
_WANSendPackets

24

Inside the rootkit

Two different types of hooks are used (indirect call + push/ret)

The botnet user mode code

26

The botnet user mode code

The first variants had the name botdll.dll and send spam
the classic way using port 25 (SMTP)
But as more and more SMTP gateways successfully detect
such spam bots, a new user mode payload was distributed
in march 2008 and changed to HTTP-mode spamming over
hotmail with stolen accounts (hotsend.dll)
Spam templates are downloaded from the C&C server,
which are temporarily stored as tmpcode.bin
Currently it is unknown what malware steals the hotmail
accounts involved in spamming
To communicate with the kernel INT 2Eh is used, to inform
about new tasks, e.g. self-disinfection or a new C&C

27

Lessons learned

Kernel mode driver could easily host other user mode
payload, e.g. banking trojans, DDoS client ...
Without automated deobfuscation scripts, it would be nearly
impossible to analyze the code
Brute forcing would have been impossible, if a stronger
encryption had been applied
Disinfection wouldn't be that easy, if the original driver in
the last PE-section would have been better crypted

28

Questions?

Thanks for good discussions and review fly to:

UG North
Elia Florio

Sergei Shevchenko
Lukasz Kwiatek

