Automated Malware Analysis

12

Gérard Wagener'?> Alexandre Dulaunoy’ Radu State!3

!MADYNES - LORIA

Laboratoire Lorrain de Recherche en Informatique et ses Applications

2CSRRT-LU

Computer Security Research and Response Team - Luxembourg

3INRIA

Institut National de Recherche en Informatique et Automatique

October 19, 2007

HAC K '_LUia-zu October p 27’ "ﬁ g
Kirchberg-Luxembourg 1 L S
http://www.hack.lu/ &

B
S ateon

Wagener, State, Dulaunoy Automated Malware Analysis

Outline

@ Introduction

© Fiw - the debugger
@ Features
@ Architecture & design
@ Malware analysis scenarios

© Experimental results

@ Future work & Conclusion

Wagener, State, Dulaunoy Automated Malware Analysis

Introduction

Introduction

@ [Aycock, 2006] there are two malware analysis techniques:
e Static Analysis: which is often hard to do due to packers and
encryption techniques.
o Dynamic Analysis: which is often incomplete due to conditions
that are not fulfilled.
o [Wagener, 2007] et al. proposed the usage of phylogenetic
trees in order to identify malware families based on sequences
of called system functions.

e [Wagener, 2007] et al. proposed a design of a framework for
analyzing malware. (Automated aNalysis and Network
Emulation, ANNE)

Wagener, State, Dulaunoy Automated Malware Analysis

Introduction

Introduction

A piece of malware can have multiple behaviors.

ES

scan_network

Wagener, State, Dulaunoy Automated Malware Analysis

Introduction

Introduction

Contribution

@ [Moser, 2007] et al. explored multiple execution paths of
malware using snapshots from CPU emulators.

@ We want to explore other strategies to unveil more
information from malware.

@ In order to discover such strategies we propose a tool fiw
which:

@ provides an interactive sandbox — high-level debugger.
@ tackles with current applied anti-debugging or anti - reverse
engineering techniques.

Wagener, State, Dulaunoy Automated Malware Analysis

. Features
Fiw - the debugger Architecture &

Fiw - the debugger

Goal: Analyzing malware (unknown w32 binaries)

@ High - level observations:

o File system & registry modifications.
e Malware networking.

e Discover communication protocols of a malware sample.
@ Low - level observations:

e System function call observation.

o Discovering packing / encryption techniques.
e Discovering vulnerabilities — dump & study machine code.

@ Actions:
o Apply fuzzing techniques via fiw - script interface or plugins.

Wagener, State, Dulaunoy Automated Malware Analysis

Fiw - the debugger E\eatures

Fiw - the debugger

Features

@ Traditional debugging actions:
Step by by execution.
Memory layout inspection.
Replay of a debug session.
Memory access facility.

@ Environmental changes:

File system changes.

Registry modifications.

Process memory alternation.
Crafting network messages.
Automated debug actions & plugins.

@ The tool fiw was implemented in C and runs on linux
operating system and has 6409 lines of code.

Wagener, State, Dulaunoy Automated Malware Analysis

Features
Architecture & design
A i

Fiw - the debugger

nalysis scen

Fiw - the debugger

Architecture & design

‘ Command Line Interface i

Memory

Virtual OS

Wagener, State, Dulaunoy Automated Malware Analysis

Featur
Architecture & design
M

ELEL

Fiw - the debugger

Fiw - the debugger

Architecture & design

ACK Queue

(4) ACK & Command

Acknowledgment & Piggybacked command, i.e memory r/w

Wagener, State, Dulaunoy Automated Malware Analysis

Features

Fiw - the debugger Architecture & design
M analysis scenarios

Fiw - the debugger

Architecture & design

Discovering memory layout.

Linux Process.

a
i.e memory pages
information
Linux Process ‘
Virtual OS (w32) Proc FS
Linux Process
= export

Wagener, State, Dulaunoy Automated Malware Analysis

Features
Architecture & design
Maly

Fiw - the debugger

Fiw - the debugger

Architecture & design

Which function calls belong to the unknown binary?

. Memory map
Function call example
200
199 fopen
| Program Fanction b 4 funcii H
N served tunction
1] P, 10] | calls: 150
2| p, 11 149 WriteFile
e fa] | | Creaerie |
reateFil 99
4 | call 13 CleataFiie) - 110
C P, 109 reateFile
Return address 81 :
_ | 81| 5
p.f: machine instructions
i 81 fclose
—= execution flow 8
R dd n
eturn address 70 lclose
. Function calls performed by the malware sample 2

Function calls performed by the virtual operating system

Wagener, State, Dulaunoy Automated Malware Analysis

Features
Architecture & design
\Y

e analy

Fiw - the debugger

Fiw - the debugger

Architecture & design

(2)Notify

(3) o

Wagener, State, Dulaunoy Automated Malware Analysis

Featur
Architecture & design
Maly analy enarios

Fiw - the debugger

Fiw - the debugger

Architecture & design

Virtual networking.

socket, connect, ...

LIBC (COPY)

Wagener, State, Dulaunoy Automated Malware Analysis

Fiw - the debugger

analysis scenarios

Fiw - the debugger

@ Replay of a debugging session:
e Pseudo break points, function calls that do not match the
break point are automatically acknowledged.
e Stop auto acknowledgment if a given return address emerges.
e Stop auto acknowledgment id a given function call emerges.
o Replay with fiw script interface.

Wagener, State, Dulaunoy Automated Malware Analysis

Fiw - the debugger 2 dlsfigT

analysis scenarios

Fiw - the debugger

Architecture & design

o Automated debug actions:

e Sometimes it is a burden to step through malware code.

e i.e. Acknowledge long sequences of GetProcAddress,
AllocHeap function calls.

o Plugins

e The tool fiw puts debugging information in environment
variables.

e This information can be accessed via script / programs that
can be launched from the tool fiw.

o Results can be carried back via exit code of the script /
programs.

Wagener, State, Dulaunoy Automated Malware Analysis

Features
Architecture & design
Malware analysis scenarios

Fiw - the debugger

Malware analysis scenarios
Discovering anti - debugging techniques

@ Dealing with packing techniques
o Let the piece of malware unpack itself and dump code from
memory.
@ Anti - debugging techniques
o Detection of soft-ice, regmon, filemon, ... via Createfile,
EnumDeviceDrivers, IsDebuggerPresen‘c1
e Code integrity checks.
o Debugger traps (int 3 or 0xCC).
o Registry key look-ups to related debuggers.

@ — these techniques do not work with the debugger fiw.

'Windows API functions

Wagener, State, Dulaunoy Automated Malware Analysis

Features
Architecture & design
Malware analysis scenarios

Fiw - the debugger

Malware analysis scenarios
Discovering anti - debugging techniques

Example (SdBot Analysis)

WORM /SdBot.506880.3, antivirname
First seen: 08.10.2007 02:58:46
Collected by nepenthes.csrrt.org
Note: Does not like debuggers :-)

Wagener, State, Dulaunoy Automated Malware Analysis

Introduction

Fiw - the debugger
Experimental results
Future work & Conclusion

Features
Architecture & design
Malware analysis scenarios

Malware analysis scenarios

Discovering anti - debugging or anti - analysis techniques

Fiw - Command Line Interface

fiw>start sdbot_506880_3.exe

fiw>CreateFileA(00568c£f, "\\\.\\SICE", c0000000,3,0,3,80)
pid: 23325 tid: 0009 ret: 00568f1f
fiw>IsDebuggerPresent() pid: 23325 tid: 0009 ret:
0059b1d9

fiw>RegOpenKeyA (80000002, 0059£306, SOFTWARE\\NuMegal\
DriverStudio") pid: 23325 tid: 0009 ret: 0059f49e
FindWindowA (0059be9f, FilemonClass") pid: 23325 tid:
0009 ret: 0059bf6f

Wagener, State, Dulaunoy Automated Malware Analysis

Features
Architecture & design
Malware analysis scenarios

Fiw - the debugger

Malware analysis scenarios

Malware code obfuscation

@ Goal: Make reverse engineering difficult as much as possible
@ Techniques:

o Use of dead code.

o Use of not needed unconditional jumps.

e Use of garabage instructions ...

e Frameworks for these purpose exits!

Analysis of Sdbot 506880 3
Fiw - Command Line Interface
fiw>0utputDebugStringA(00577£31 "Themida Professional (c)

pid: 23721 tid: 0009 ret: 0057803b
fiw>

Wagener, State, Dulaunoy Automated Malware Analysis

Features
Architecture & design
Malware analysis scenarios

Fiw - the debugger

Malware analysis scenarios

Discovering termination cause

@ Study cause of termination of execution.

o Let the tool fiw step trough ...

Analysis of Sdbot 506880 3

Fiw - Command Line Interface

fiw>start sdbot_506880_3.exe

fiw>auto ack

fiw>cont

[A] GetEnvironmentVariableA(00542fbd, LNumDLLsProt",
00542fcd) pid: 26887 tid: 0009 ret: 005437de

[A] TerminateProcess(ffffffff, 00000000) pid: 26887 tid:
0009 ret: 0054542f

2nd round adjust conditions!

Wagener, State, Dulaunoy Automated Malware Analysis

Features
Architecture & design
Malware analysis scenarios

Fiw - the debugger

Malware analysis scenarios

Discovering termination cause

@ Set pseudo break point on an address or function name.
@ Launch the analysis again.
Analysis of Sdbot 506880 3

Fiw - Command Line Interface

fiw>start sdbot_506880_3.exe
fiw>break ret 005437de

fiw>GetEnvironmentVariableA (00542fbd, LNumDLLsProt",
00542fcd) pid: 27206 tid: 0009 ret: 005437de

fiw>

Wagener, State, Dulaunoy Automated Malware Analysis

Introduction

Fiw - the debugger
Experimental results
Future work & Conclusion

Features
Architecture & design
Malware analysis scenarios

Malware analysis scenarios

Discovering packing techniques

@ Have a look at the memory layout.
@ Observe return address of function calls.

Analysis of Sdbot 506880 3
Fiw - Command Line Interface

fiw>!./info_process_all

00400000-00401000 r-xp 00000000 62:00 456973
SdBot_506880_3.exe

00401000-0041e000 rwxp 00001000 62:00 456973
SdBot_506880_3.exe

fiw>cont

fiw>GlobalAddAtomW(6084c926 L"ux_theme") pid: 28009 tid:
0009 ret: 6083b9ad

0x6083b9ad ¢[0x00400000 - 0x0041e000)].

Wagener, State, Dulaunoy Automated Malware Analysis

Features
Architecture & design
Malware analysis scenarios

Fiw - the debugger

Malware analysis scenarios

Communicating with the malware sample

A piece of malware sometimes communicates with other
entities.

A piece malware that includes a backdoor accepts commands.
It would be nice to discover the commands.

The tool fiw has a command vnet

In that case the messages send by a malware sample are sent
to the tool fiw.

Wagener, State, Dulaunoy Automated Malware Analysis

Introduction

Fiw - the debugger
Experimental results
Future work & Conclusion

Features
Architecture & design
Malware analysis scenarios

Communicating with the malware sample

Worm /Rbot.102912.13 analysis:
Fiw - Command Line Interface

fiw>vnet on

fiw>break name connect

fiw>start rbot_102912_13.exe

fiw>connect (58, 33f478, 10) pid: 28309 tid: 0009 ret:
0040e3a4

fiw>cont

fiw>send (00000058, 0033£f220, 0000002e, 00000000) pid:
28309 tid: 0009 ret: 0040e4dl

fiw>cont

fiw>vnet tcp client list

x Client socket list *x*x

Socket: 6

Wagener, State, Dulaunoy Automated Malware Analysis

Features
Architecture & design
Malware analysis scenarios

Fiw - the debugger

Malware analysis scenarios

Communicating with the malware sample

Fiw - Command Line Interface

fiw>vnet tcp recv 6 46

**x* Reveived 46 bytes **x

Ox4e 0x49 0x43 0x4b 0x20 0x55 0x53 0x41 0x7c 0x31 0x33
0x36 0x35 0x38 0x31 Oxd Oxa 0x55 0x53 0x45 0x52 0x20 0x77
0x65 0x68 0x65 0x79 0x63 0x20 0x30 0x20 0x30 0x20 0x3a
0x55 0x53 0x41 0x7c 0x31 0x33 0x36 0x35 0x38 0x31 Oxd Oxa

fiw>cont

o Malware often sends binary data

@ This time: The string above is in ascii NICK USA—136581
USER weheyc 0 0 :USA—136581.

Wagener, State, Dulaunoy Automated Malware Analysis

Introduction

Fiw - the debugger
Experimental results
Future work & Conclusion

Discovering malware communication protocol

Features
Architecture & design
Malware analysis scenarios

Disassembling the memory in order to discover conditions.

Fiw - Command Line Interface

fiw>recv (00000058, 0033d6a0, 00001000, 00000000) pid:
28309 tid: 0009 ret: 0040e519
fiw>dasm 0040e519 128

x Disassemble address 40e519 size 128
0040E519 85C0 test eax,eax

0040E51B 7ECD jng O0x40edea

0040E51D 8D85EOF3FFFF lea eax, [ebp-0xc20]

0040E523 50 push eax

0040E524 8D8SEOQE3FFFF lea eax, [ebp-0x1c20]

0040E52A 50 push eax

0040E52B E81CD7FFFF call dword Oxffffd7ic
fiw>

Wagener, State, Dulaunoy Automated Malware Analysis

Experimental results

Experimental results

Table: General information about the malware set

Number of malware 104
Observation period 2005-2007
Average file size 135KB
Worms 34%

Mean detection rate 57.21%
Antivir detection rate 69.23%
Clamav detection rate 35.58%
Fprot detection rate 57.69%
Norman detection rate 66.35%

Wagener, State, Dulaunoy Automated Malware Analysis

Experimental results

Experimental results

@ Explore main execution path.

@ Relaunch execution and check if another execution path is
there.

Table: Control Flow division

Function calls that influence the CFG #of malware

String compare functions 41%
Query of a registry value 60%
Query current date 41%
Check for internet connectivity 43%
Mutex 64%

Wagener, State, Dulaunoy Automated Malware Analysis

Future work & Conclusion

Conclusion

We presented a debugger for analyzing malware.

The tool fiw is tightly bound to a virtual operating system
w32.

System function calls need to be acknowledged by the tool fiw
before their execution.

The tool fiw can inspect the memory of a malware sample

The tool fiw can change the file-system and the registry in
order to make a function call successful.

The tool fiw can communicate with a malware sample via a
virtual network.

The tool fiw can do some automated debug actions via
plugins.

We showed various malware analysis scenarios.

Wagener, State, Dulaunoy Automated Malware Analysis

Future work & Conclusion

@ Demo
@ Questions & Answers

@ Acknowledgments: Hereby | want to thank the CSRRT-LU
team for having given me access to their malware database for
doing the experiments.

Wagener, State, Dulaunoy Automated Malware Analysis

Future work & Conclusion

Future work

Use a native windows OS as virtual operating system.
Make the tool fiw more user-friendly.

Add more debugging facilities.

Integrate the tool in the malware analysis framework A.N.N.E.
(Automated Analysis and Network Emulation, [ANNE,2006]).

o Goal of the A.N.N.E. framework: Do malware analysis in
automated way.

o A server accepts malware samples and analyzes them with
custom defined plugins.

@ Improve replay debugging actions.
o Correlate observations performed by the tool fiw.

@ Correlate observation performed by the tool fiw with network
information.

Wagener, State, Dulaunoy Automated Malware Analysis

Thank you for your attention!
Contact: haegardev@gmail.com

Wagener, State, Dulaunoy Automated Malware Analysis

Future work & Conclusion

Bibliography

[John Aycock.
Computer Viruses and Malware. Springer, 2006.

@ Gérard Wagener and Radu State and Alexandre Dulaunoy.
Malware Behaviour Analysis. In proceedings of the the 2nd
International Workshop on the Theory of Computer Viruses 2007.

@ Andreas Moser and Christopher Kriigel and Engin Kirda.
Exploring Multiple Execution Paths for Malware Analysis.. |IEEE
Symposium on Security and Privacy, 231-245, 2007.

@ Gérard Wagener and Alexandre Dulaunoy and Thomas Engel.
Automated aNalysis and Network Emulation.
http://www.csrrt.org.lu/wiki/index.php/Capturing_and_analyzing_Malware,
2006.

Wagener, State, Dulaunoy Automated Malware Analysis

	Introduction
	Fiw - the debugger
	Features
	Architecture & design
	Malware analysis scenarios

	Experimental results
	Future work & Conclusion

