

Hack.Lu 2006

Nguyen Anh Quynh <aquynh –at- gmail com> Keio university, Japan

Who am I?

- Nguyen Anh Quynh, a PhD student of Takefuji-lab, Keio university, Japan
- Interests: Network/Computer Security,
 Operating system, Robust system,
 Virtualization
- Non-geek hobby: traveling, reading and playing soccer

Motivation

- Sebek is a de-facto data capture tool of honeynet architecture
- But there are various ways to defeat Sebek because Sebek is not "invisible" enough
- Xebek is our solution on Xen Virtual Machine to address Sebek's problems
 - More "invisible"
 - More flexible
 - Better performance

Overview

- Honeynet architecture and Sebek
- Sebek's problems
- Xebek comes to rescue
 - Introduction to Xen Virtual Machine
 - Xebek architecture & implementation
 - Demonstration
- Q & A

Part I

- Honeynet architecture and Sebek
 - Honeypot introduction
 - Honeynet architecture
 - Sebek technology

Honeypot technology

- What is a honeypot?
 - The information system resource whose value lies in unauthorized or illicit use of that resource
 - Has no production value, anything going in/out the honeypot is likely a probe/attack/compromise
 - Primary value to most organizations is information

Honeypot impact

Advantage

- High valuable data
- Reduce false positives
- Catch new attacks (0day bug?)

Disadvantage

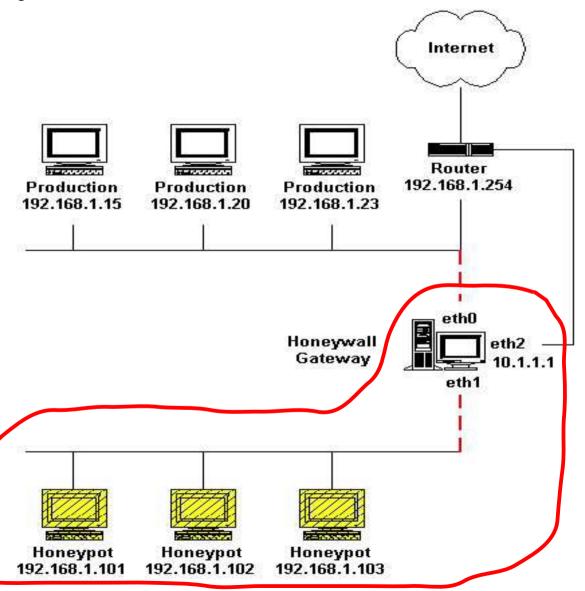
- Limited view
- Risk of take over

Honeypot types Categorized based on level of interaction

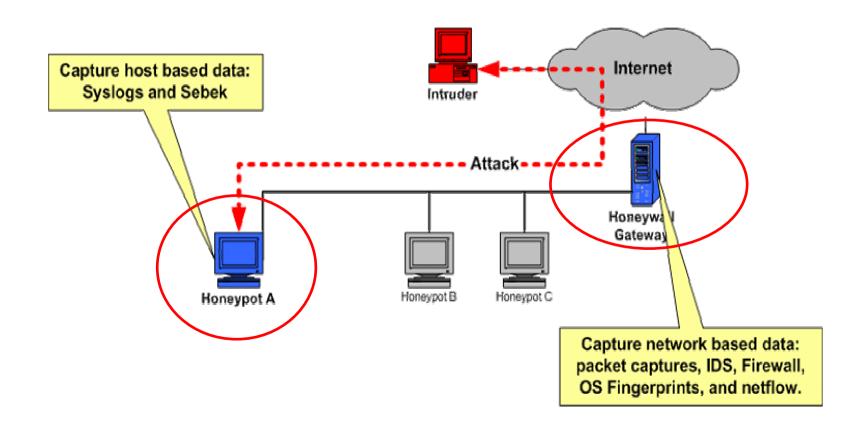
Low-interaction

- Emulate services, applications, OSes
 - Low risk and easy to deploy/maintain
 - But captured information is limited

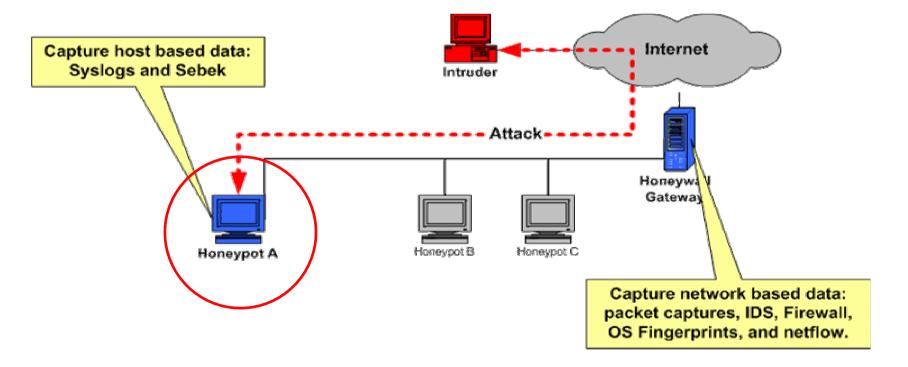
Honeyd


High-interaction

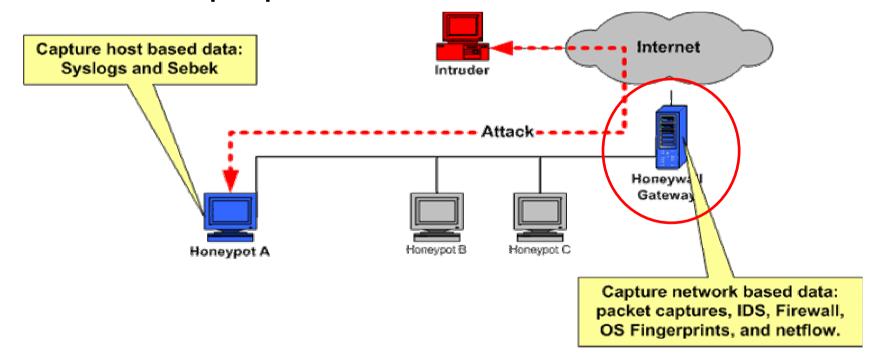
- Real services, application, OSes
 - Capture extensive information
 - But highly risk and hard to maintain


How honeynet works

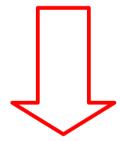
A highly controlled network where every packet entering or leaving is monitored, captured and analyzed


Honeynet components

- 2 key components
- Data capture
- Data logging & analysis


Data capture

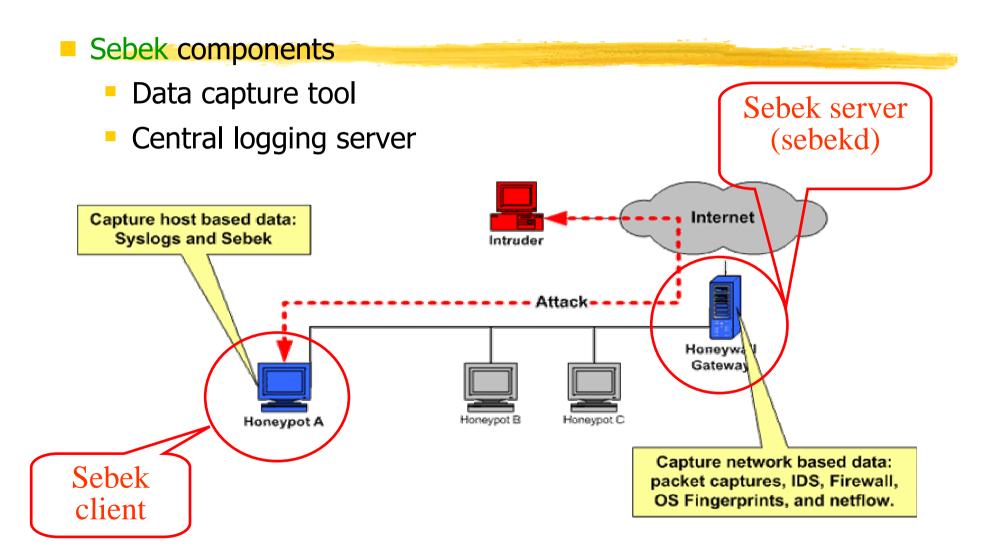
- Capture activities at various levels
 - Application
 - Network
 - OS level


Data analysis

- Manage and analysis captured data from honeypots
 - Investigate malware
 - Forensic purpose

Honeynet generations

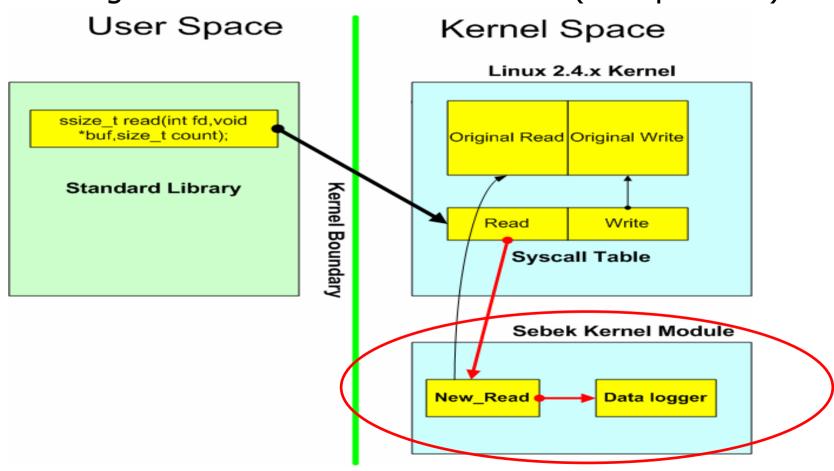
- Gen I
- Gen II, Gen III (currently)
 - radical change in architecture focuses on the data capture tool



Sebek as a data capture tool

Sebek: a data capture tool

- Born in Honeynet Gen II
- Play a key role in Honeynet architecture
- Gen III (currently)


Sebek architecture

Sebek client technique

Data capture tool: patches system-calls (open/fork/read/write/socket)

Send out gathered data via network-stack (UDP protocol)

Sebek features

- hidden kernel module
- dumps activity to the network via UDP protocol to a central logging machine
- fool attacker by modifying network stack, so Sebek traffic is invisible (well, almost!)

Part 2

- Current problems of Sebek
 - Easy to identify
 - How easy it is?
 - Possible even with unprileged user
 - How ?
 - 7 methods to defeat Sebek

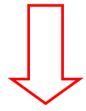
Sebek client requirement

- Most vital requirement for a data capture tool: Function as covert as possible => Invisible problem
 - Otherwise, game over
 - No more chance to watch out the attacker
 - No more chance to catch 0-day bug (daydream?)
 - Attacker can destroy the honeypot
 - Who fools who then?

But can Sebek deliver?

- Hmm, not really. Various ways to defeat Sebek
 - 1. Can be discover by even unprivileged user
 - 2. Network statistics disclose Sebek
 - 3. Brute-force scanning method
 - 4. System-call address checking
 - 5. Remove Sebek is feasible
 - 6. Sniff at the right place
 - 7. Bring down the central logging server

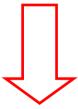
Method (1)


- Sebek can be discover by even unprivileged user
 - dd-attack
 - Generate lots of data
 dd if=/dev/zero of=/dev/null bs=1
 - Check to see if network congestion ?

Network stack is employed to send data out

Method (2)

- Network statistics disclose Sebek
 - Compare dev->getstats()->tx_bytes with value found in /proc/net/dev

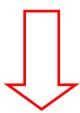


Why?

Network stack is employed to send data out

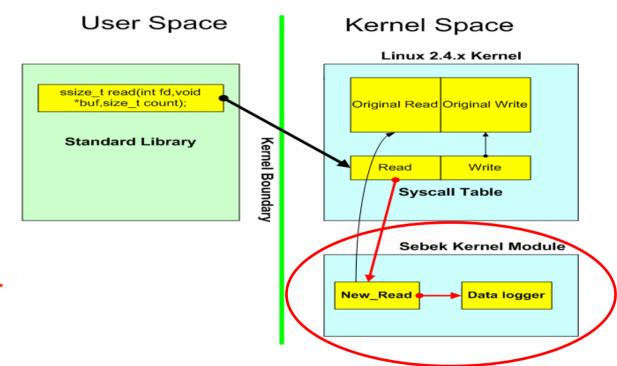
Method (3)

- Brute-force scanning method to detect hidden kernel module
 - Look for hidden kernel module
 - linux-airt tool by madsys



Why?

Sebek is implemented as a (hidden)kernel module

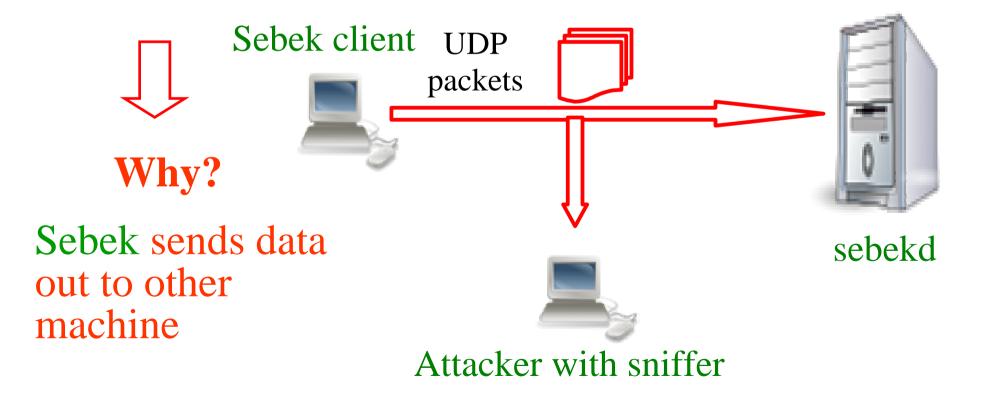

Method (4)

- System-call addresses checking
 - System-call addresses at abnormal places?

Why?

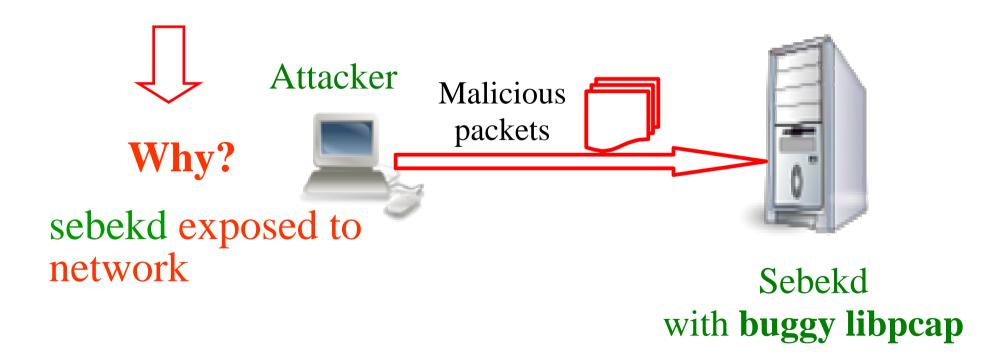
Sebek replaces original system-calls

Method (5)


- Remove Sebek is feasible
 - (unsebek.c by J.Corey)
 - Look for the sys_call_table by scanning in memory
 - Recover original system-call with exported symbols

Why?

Sebek replaces orginal system-calls


Method (6)

- Detect honeypot with Sebek
 - Sniff at the right place from outside

Method (7)

- Bring down the central logging server
 - Data logging server (sebekd) has vulnerable libpcap?

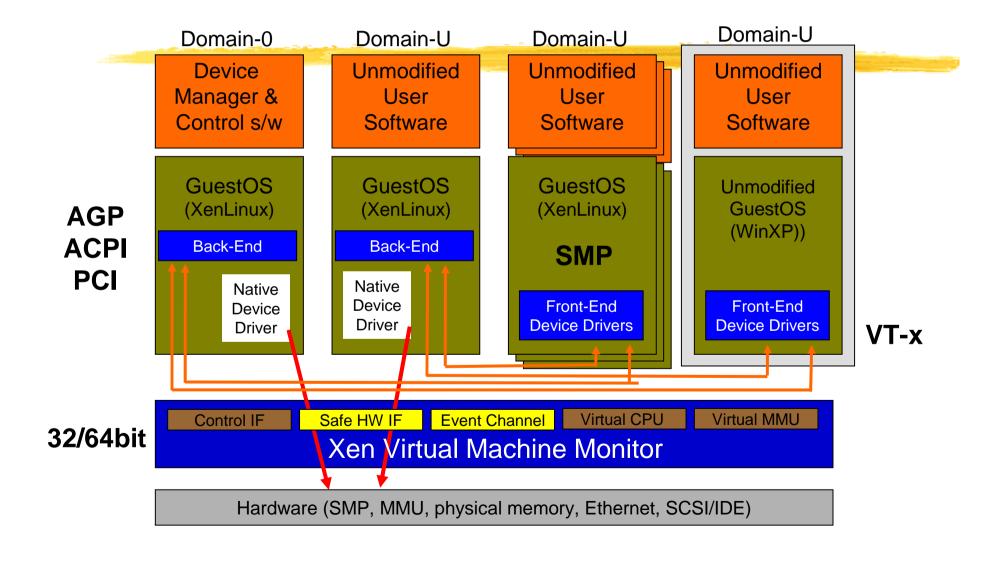
Reasons make Sebek sux ©

- (1) Uses network stack to send data out
- (2) Logging data sent out can be sniffed online
- (3) Function as kernel module + replace original system-calls
- (4) Central logging server (sebekd) exposed to the network
- (5) Data transfer might not be reliable (UDP)

Do you still think that current honeynet can fool skillful hackers?

- I seriously doubt that!
- Should we give up?
- No, let's keep fighting and raise the bar a little bit ;-)

Part 3

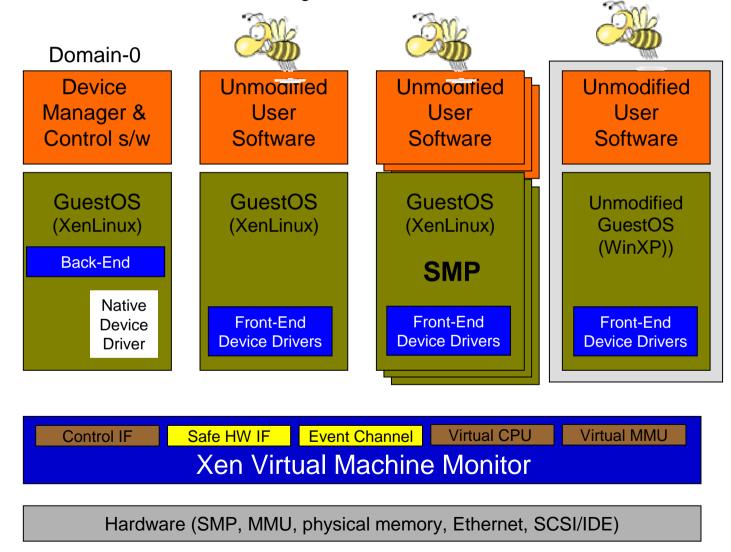

Xebek comes to rescue

- Virtual honeypot on virtual machine
- Xen Virtual Machine technology
- Xebek solution

Fix Sebek's problems

- Bring up virtual machine technology: Xen
- Exploit the advantage introduced by Xen to address discussed problems

Xen 3.0 Architecture


Xen's main components

- Xen hypervisor runs on top of hardware
- Domains with modified kernel for Xen architecture, run on top of Xen
- Special device drivers in Dom0 & DomU (backend-frontend architecture)
- Xen control tools in Dom0 (xend, xm)
- Others: xenbus, xenstore, event-channel, balloon driver, ...

Xen's future: Bright

- Xen 3.0 was realeased at the end of 2005
- Xen 3.0.3 will be out very soon
- Object: to be gradually merged into Linux kernel in 2006
- Already adopted by ISPs, datacenters, banks,...
- Will be widely used in the near future

Xen-based honeynet

Xebek solution for Xen-based honeynet

- Xebek: Goals and approaches
- Xebek Architecture
- Xebek Implementation's issues
- Xebek Evaluation
- Hardening Xebek
- Detecting Xebek

Xebek goals and approaches

- (1) Capture data as Sebek does, but with some improvements
- (2) Eliminate problems of leaving too many traces when forwarding data out
- (3) Harden the central logging server

Goal (1)

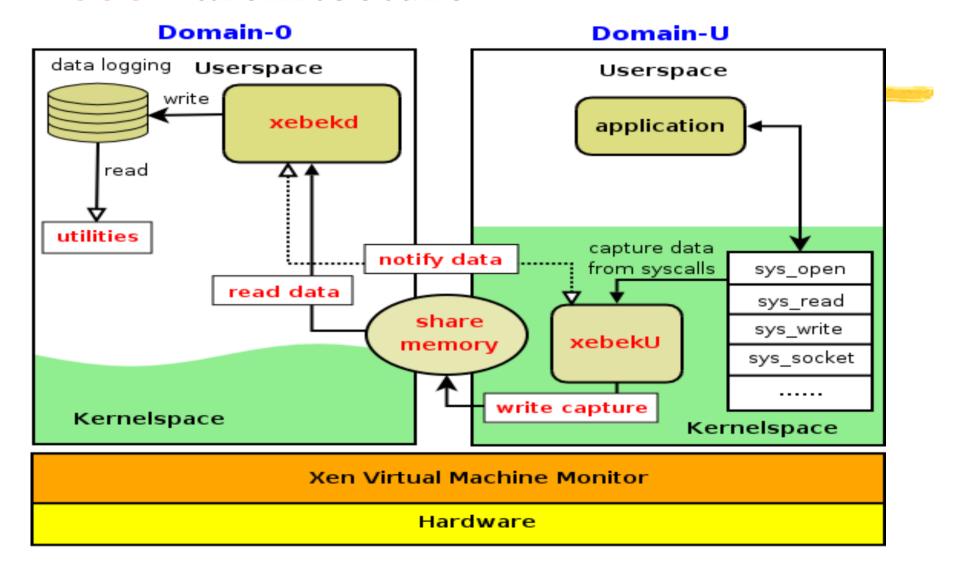
- Capture data as Sebek does, but with some improvements
 - Sebek3 captures data by intercepting system-calls (read/write/open/fork/socket)
 - ==> so Xebek does.
 - But Xebek patches the system-calls, so Xebek does not run as a kernel module

- (1) Uses network stack to send data out
- (2) Data can be sniffed
- (3) Function as KLM & replace original system-calls
- (4) Central logging server exposed to the network
- (5) Data transfer might not be reliable (UDP)

Goal (2)

- Eliminate problems of leaving too many traces when forwarding data out
 - Xebek does not use network stack to deliver data as Sebek does
 - Using shared memory between DomU and Dom0 instead to exchange data

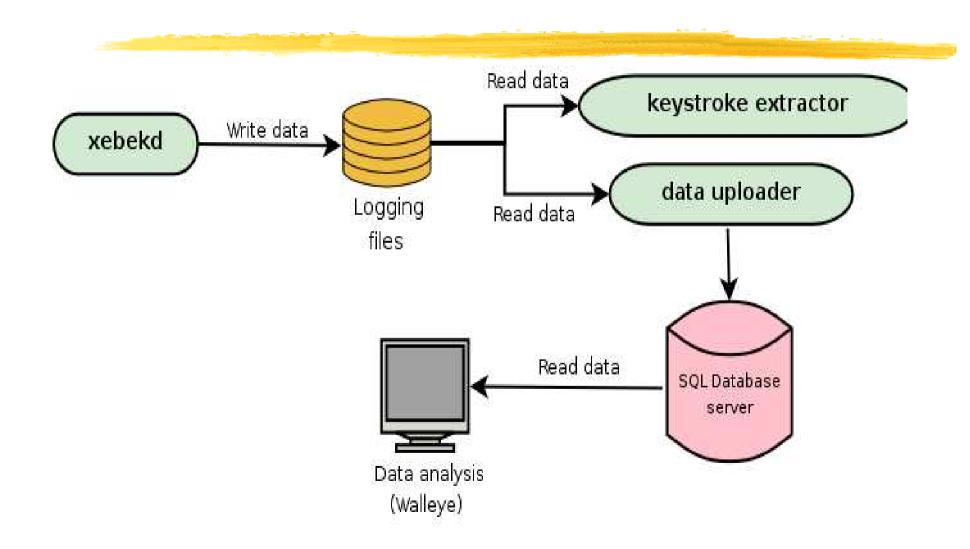
- (1) Uses network stack to send data out
- (2) Logging data can be sniffed online
- (3) Function as KLM & replace original system-calls
- (4) Central logging server exposed to the network
- (5) Data transfer might not be reliable (UDP)


Goal (3)

- Harden the central logging server
 - Put the central logging server in Dom0 to pick up data forwarded from DomU
 - No more exposed to the network

- (1) Uses network stack to send data out
- (2) Data can be sniffed
- (3) Function as KLM & replace original system-calls
- (4) Central logging server exposed to the network
- (5) Data transfer might not be reliable (UDP)

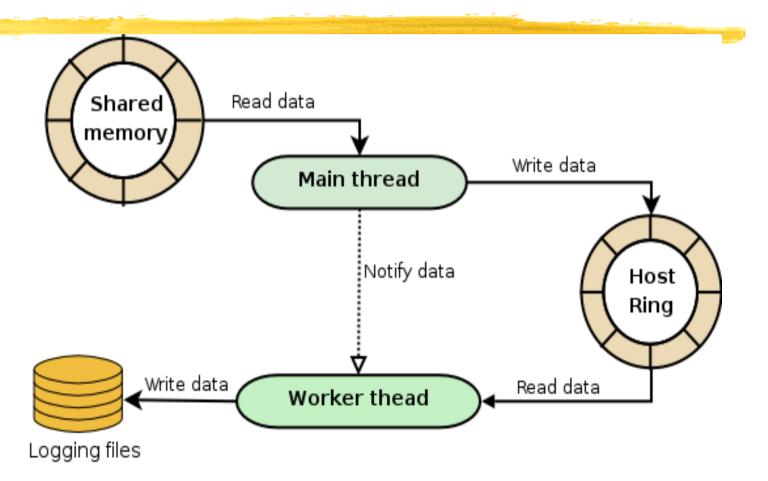
Xebek architecture


xebekU

- Xebek component in DomU's kernel
 - patch the system-calls (open/read/write/fork/socket)
 - establish shared memory with Dom0
 - put the gathered data from system-calls to shared-memory, then notifies xebekd

xebekd

- logging recorder in Dom0
 - waits for notification from xebekU
 - pick up data in shared-memory, then save to corresponding logging file
 - notify xebekU on completion

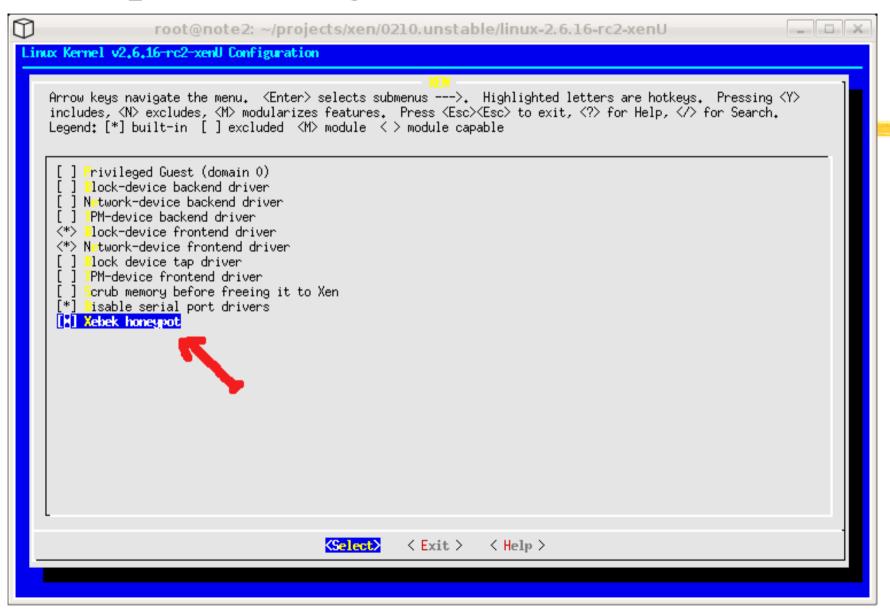

Xebek utilities

xebekd: multiple threading

main thread

worker thread

Coding

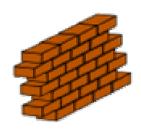

- Version 0.2 Linux based DomU only ATM
 - Kernel patch
- xebekd + xebeklive+ xkeys: 1676 lines
- xebekU: 1848 lines (linux-2.6.16-rc2)
 - Small increase in kernel binary size
 - 946550 bytes -> 948494 bytes
 - Small patch to kernel

File name	Modified lines
kernel/fork.c	54
fs/op en.c	21
fs/read_write.c	148
net/socket.c	44

Patching kernel/fork.c::do_fork())

```
#ifdef CONFIG_XEN_XEBEK
    struct xebek_packet p;
    if (my_private.active) {
        p.event = EVT_FORK;
        fill_time(&p.time);
        p.size = sizeof(current->comm);
        p.version = XEBEK_VERSION;
        p.magic = XEBEK_MAGIC;
        p.uid = current->uid;
        p.ppid = current->parent->pid;
        p.pid = current->pid;
        copy_to_buffer(&p, current->comm, p.size, 0);
#endif
```

Compile Configuration



Xebek evaluation

Method	Native	Sebek	Xebek
OPEN	8.194	1509.073 (~184 times)	9.720 (18.62%)
READ	1.221	972.649 (~976 times)	1.968 (61.13%)
WRITE	1.106	1.113 (-)	1.822 (64.69%)
FORK	900.380	900.433 (~0%)	900.421 (~0%)
TCP	842.256	1276.562 (51.56%)	1004.912 (19.31%)
UDP	1050.991	1100.262 (4.68%)	1085.241 (3.25%)


LMBench benchmark results

Hardening Xebek

- Harden DomU:
 - Protect kernel binary? No need ©
 - Protect kernel symbol? No need ©
 - Shutdown all the paths to the kernel
 - No kernel module loading
 - /dev/{kmem, mem, port} removed
- Harden Dom0
 - Harden system (SELinux, LIDS, AppArmor)
 - Run Dom0 with no network access

Detecting Xebek

- Intruder gains kernel access ?
 - We are vulnerable to the brute-force scanning method on kernel memory
 - Block all path to kernel.

- Intruder has no kernel access?
 - Timing attack based on syscall latency?
 - Impossible to solve completely !!! ⊗
- Removing kernel access might be suspicious !!!

Demonstration

Future work

- Analysis tool: Adapt Walleye for Xebek
- Maintenance Xebek patch for different kernel versions (costly?)
- Make Xebek more flexible
 - Adapt Xebek to the latest Sebek scheme
 - Optimize to further reduce latency
 - Port Xebek to other platforms like *BSD/Solaris/...
 - ???

Xebek2 in progress

- As stealthy as Xebek
- No need to patch DomU's kernel, no need any userspace process, either.
- Of course no need to change the hypervisor (Xen) layer for Xebek2 to work
- Absolutely no change to DomU!!!
- Stay tuned for Hack.lu 2007 ©

Conclusions

Xebek is a robust data capture tool for Xenbased virtual honeypot

- More "invisible"
- More reliable/flexible
- Open source: To be released under GPL licencse soon around end of 2006 (when I have more free time ⊗)

Towards an Invisible Honeypot Monitoring Tool

Nguyen Anh Quynh <aquynh –at- gmail com> Keio university, Japan

Thank you!

Questions/Comments?