

Belgacom ICT


Broadcasting by Misuse of Satellite ISPs

André Adelsbach Telindus Luxembourg

Ulrich Greveler Ruhr-Universität Bochum, Germany

CHANGE THINGS YOUR WAY

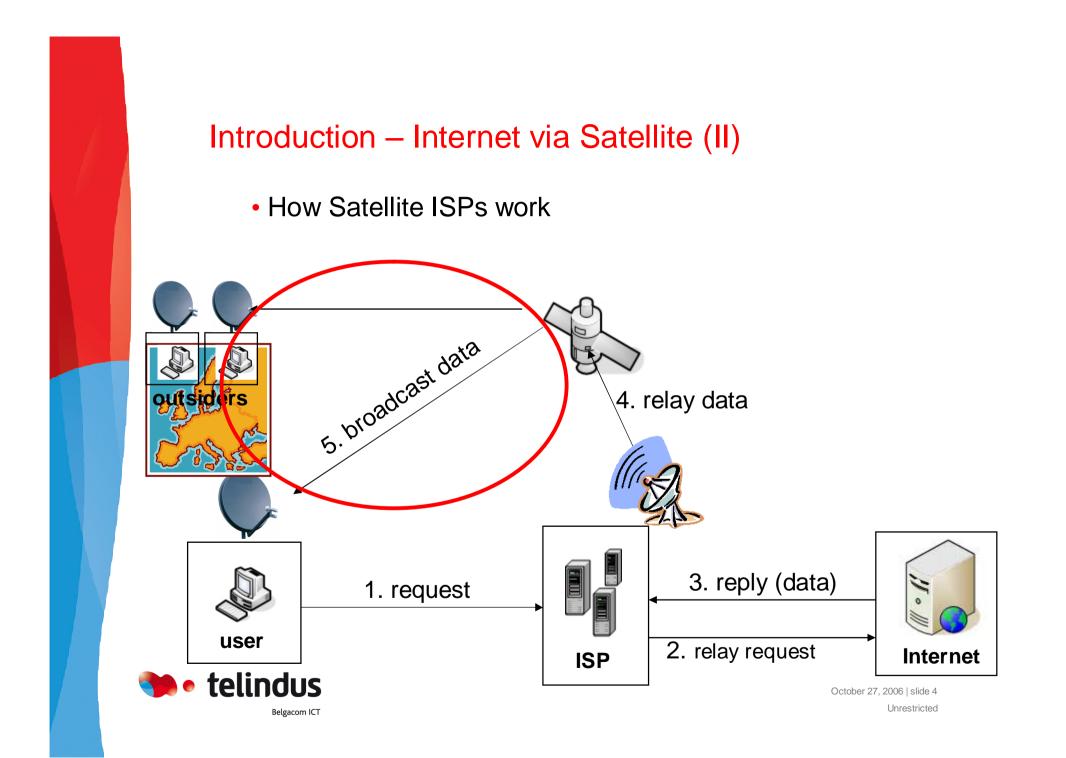
October 27, 2006 Unrestricted

Outline

- Introduction: Internet via Satellite
- Some « History » How we got here
 - Privacy & security issues for users
 - Misuse for Data Broadcasts by
 - outsiders
 - insiders
- Crypto-Enforced Unicast Communication on broadcast/shared channel
 - Abstract Communication Model & Instantiations
 - Insider Attacks: how to misuse ISP for broadcasts despite of encryption
 - Countermeasures against Insider Attacks
- Conclusion

Belgacom ICT

telindus


Unrestricted

Introduction – Internet via Satellite (I)

• Satellites:

- Specialized wireless transmitter, placed in Geostationary orbit (36.000 km)
- 280 ms for ground station → satellite → ground : use of PEPs !
- Transmit radio, television, ... and data (e.g. internet access)
- Cover low-infrastructure areas (no DSL, or no cable/leased line)
- How Satellite ISPs work
 - « Home-user edition »: mostly asymmetric communication
 - upstream via dial-up; DVB downstream via satellite broadcast
 - TCP/IP packets are encapsulated in DVB frames
 - User's equipment: PC, satellite dish, DVB card, ISDN card, software proxy

« History » - How we got here (I)

- 2004: study on Satellite ISPs at Ruhr-University of Bochum
 - Findings: (apparently known to hackers before)
 - Some Satellite ISPs do not encrypt satellite downstream
 Can be passively sniffed with standard PC, satellite dish & DVB card
 - → Linux DVB driver gives you a network interface that can be sniffed with any standard network sniffer (e.g., Ethereal/Wireshark)
 - sniffing is possible in the whole footprint
 - attackers can do it at home; no way to catch them

« History » - How we got here (I)

• 2004: study on Satellite ISPs at Ruhr-University of Bochum

```
Protocol Hierarchy Statistics (1 minute of data)
Filter: frame
frame
                                         frames:82096 bytes:71296692
  eth
                                         frames:82096 bytes:71296692
    ip
                                         frames:82096 bytes:71296692
                                         frames:80020 bytes:70762488
      tcp
                                         frames:54167 bytes:64081047
        http
                                         frames:1319 bytes:312187
        msnms
                                         frames:178 bytes:82399
        irc
                                         frames:722 bytes:157358
        ymsg
                                         frames:216 bytes:278939
        nntp
                                         frames: 563 bytes: 436954
        ssl
        edonkey
                                         frames:617 bytes:393671
                                         frames:172 bytes:203992
        rtsp
                                         frames:90 bytes:22612
        aim
        gnutella.
                                         frames:236 bytes:150535
                                         frames:111 bytes:29189
        pop
        telnet
                                         frames:44 bytes:7731
        ftp
                                         frames:7 bytes:1130
        Idap
                                         frames:6 bytes:1168
(...)
                                    ______
```


« History » - How we got here (II)

- 2004: study on Satellite ISPs at Ruhr-University of Bochum
 - attackers can sniff user's downlink
 - web browsing (HTTP response including cookies)
 - emails, chats
 - some users even try to run VOIP via Satellite ISPs
 - → severe security risks for users !
 e.g. identity theft (cookies, password recovery via email)
 - → severe privacy risks for users (extensive profiling possible)
 - → Recommendation: users should use Satellite ISP that offer encryption or make sure that they use security mechanisms on higher layers (SSL, SSH, ...)

« History » - How we got here (II)

- 2004: study on Satellite ISPs at Rul
 - attackers can sniff user's downlink
 - web browsing (HTTP response inclu
 - emails, chats
 - some users even try to run VOIP via
 - \rightarrow severe security risks for users !

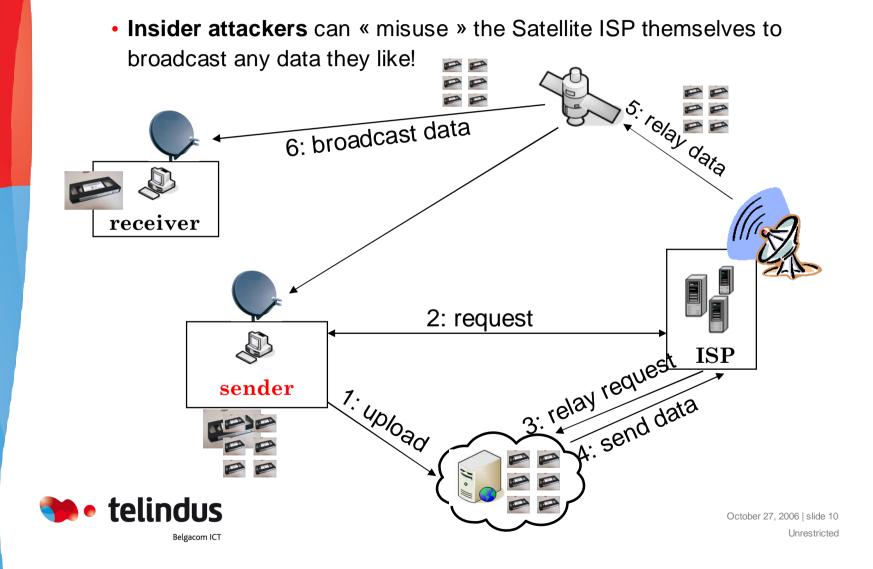
e.g. identity theft (cookies, password recovery via email)

→ severe privacy risks for users (extensive profiling possible)

→ Recommendation: users should use Satellite ISP that offer encryption or make sure that they use security mechanisms on higher layers (SSL, SSH, ...)

Weiter >

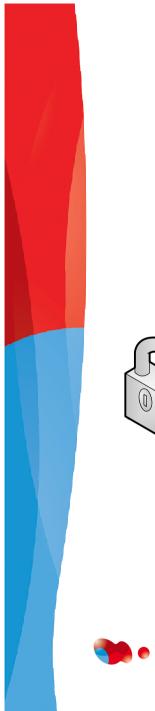
W			iteseer 🕻		o://cgi4.ebay.de/v	
••					-	len Anmelder
			Y	Kaufen	Verkaufen	Mein eBay
				. <u>-</u>		
	Sie h	aben	Ihr Pa	sswort ver	gessen?	
÷						


October 27, 2006 | slide 8 Unrestricted

« History » - How we got here (III)

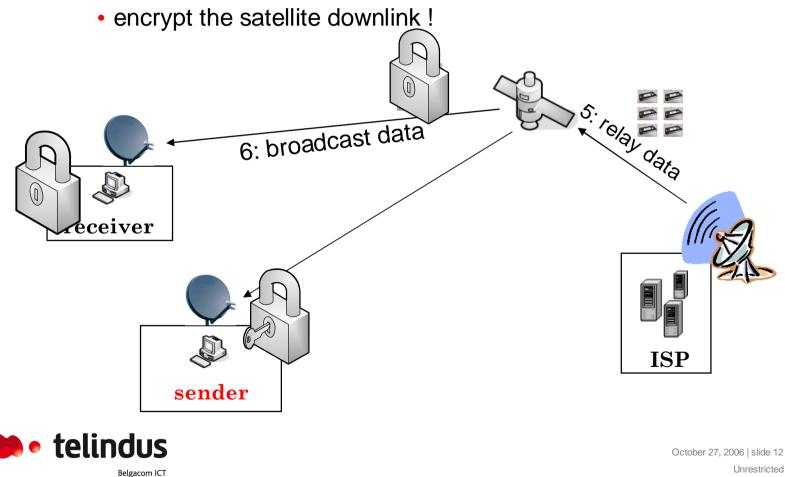
- Question: Any other security issues due to unencrypted Satellite Downlink?
- Outsider attackers can misuse users of Satellite ISPs to broadcast any data they like!
 - Just send an email with data attached to users
 - when users fetch email from their POP3 account the attackers data will be broadcasted
 - receivers are completely passive and remain perfectly anonymous !
 - attackers may use remailers to stay anonymous as well
 - data can even be encrypted or hidden \rightarrow perfect for criminals
 - best thing: its for free ⁽ⁱ⁾
 - Countermeasure: Satellite ISPs should offer encrypted downlinks

« History » - How we got here (IV)



Why Satellite ISPs should care about such Broadcasts ?

- It may harm the ISP's business model
 - broadcasts are sold at a higher price
- Possible liability and impact on reputation if illegal content is broadcasted
- Attack other services offered by Satellite operator or its customers
 - Card-Sharing attacks: legitimate customers of Pay-TV service distribute their keys to peers
 - mostly unicasts → scales not well to larger groups of peers
 - Next Generation Card-Sharing Attacks on Pay-TV
 - (Mis-)using the Satellite ISP allows to broadcast these keys via the same channel that distributes the encrypted Pay-TV.
 - ➔ directly harms the business of Pay-TV provider
 - ➔ indirectly harms the business of Satellite carriers



October 27, 2006 | slide 11 Unrestricted

Effective Countermeasures ?

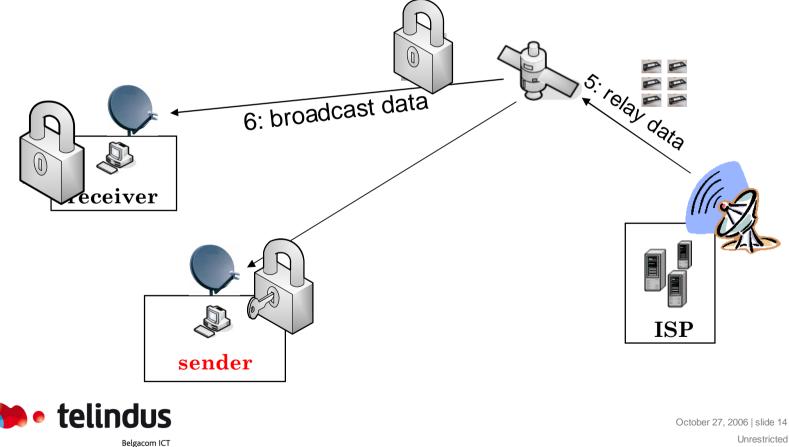
• What can carriers do to prevent this ?

Belgacom ICT


Insider Attacks Enabling Data Broadcasts on Crypto-Enforced Unicast Networks

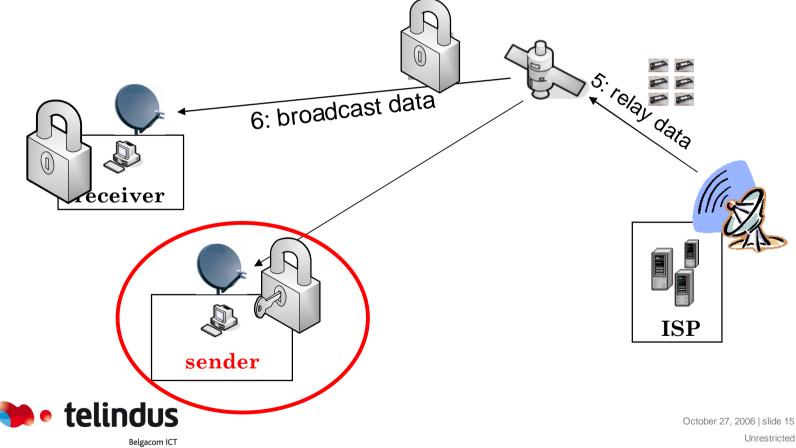
André Adelsbach Telindus Luxembourg

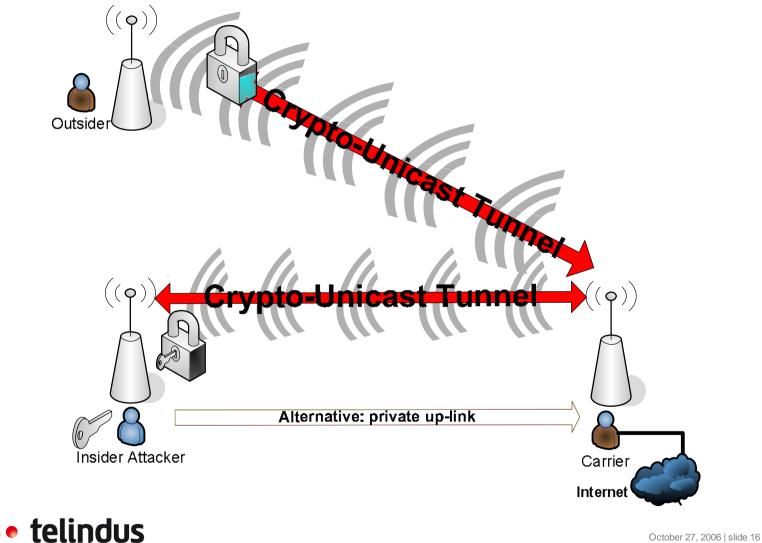
Ulrich Greveler Ruhr-Universität Bochum, Germany


CHANGE THINGS YOUR WAY

October 27, 2006 Unrestricted

Effective Countermeasures ?


• **Observation:** secure communication protocols aim to prevent outsider attacks



Effective Countermeasures ?

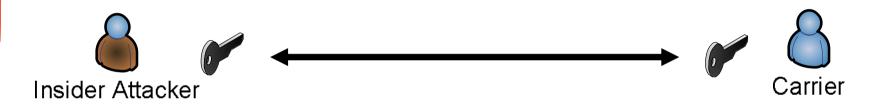
• But we are dealing with an insider attacker who participates in the protocol and knows the decryption key ...

Generalization to broadcast/shared-medium ISPs

Belgacom ICT

Unrestricted

Generalization to broadcast/shared-medium ISPs


- Abstract Communication Model
 - Roles: ISP, user (insider attacker) and outsiders
 - ISP → Users: Broadcast Channel (signals can be received by outsiders)
 - unicast communication enforced by encryption
 - Users → ISP: either Broadcast or private channel
- Instantiations: WIMAX ISPs, WLAN ISPs, Cable ISPs, Satellite ISPs
- But: Satellite ISPs offer the best value for attackers
 - highly asymmetric capabilities in terms of coverage

Insider Attacks

• Crypto-Unicast-Tunnel is established in two phases:

• Key-Exchange Phase: user and ISP exchange a key

Encrypted Transmission Phase: user and ISP communicate encrypted

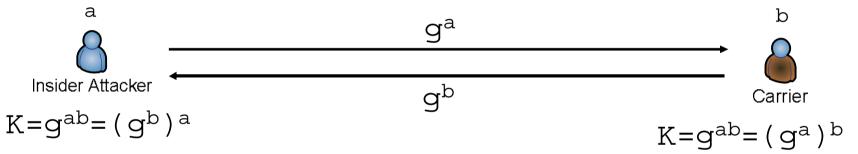
Crypto-Unicast Tunnel

• Insider attacker can try to attack both phases......

October 27, 2006 | slide 20 Unrestricted

Insider Attacks on Key-Exchange Phase (I)

- Insider Attacks normally not considered in practice
- Insider can always distribute its keys (if he can access it)
 - direct communication, publish in newsgroup, IRC
 → requires additional communication !
 - covert timing channels on broadcast channel
- better ways to attack key-exchange to make sure that outsiders get keys automatically?
 - force key-exchange to yield fixed keys (e.g., 0x00000) apriori known to outsiders
 - coined «key control» in research


lelgacom IC

October 27, 2006 | slide 21 Unrestricted

Insider Attacks on Key-Exchange Phase (II)

• Some susceptible examples:

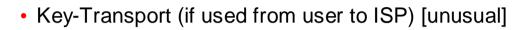
- Key-Transport (if used from user to ISP) [unusual]
- Diffie Hellman Key-Agreement: Setup large prime p; generator g

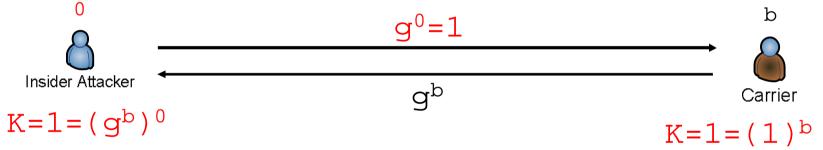
•Use Cases:

•DOCSIS/WIMAX: Key-Transport from ISP to User

➔ not susceptible

Some Satellite ISPs use DH via dial-up connection


➔ may be susceptible


October 27, 2006 | slide 22 Unrestricted

Insider Attacks on Key-Exchange Phase (II)

• Some susceptible examples:

• Diffie Hellman Key-Agreement: Setup large prime p; generator g

•Use Cases:

•DOCSIS/WIMAX: Key-Transport from ISP to User

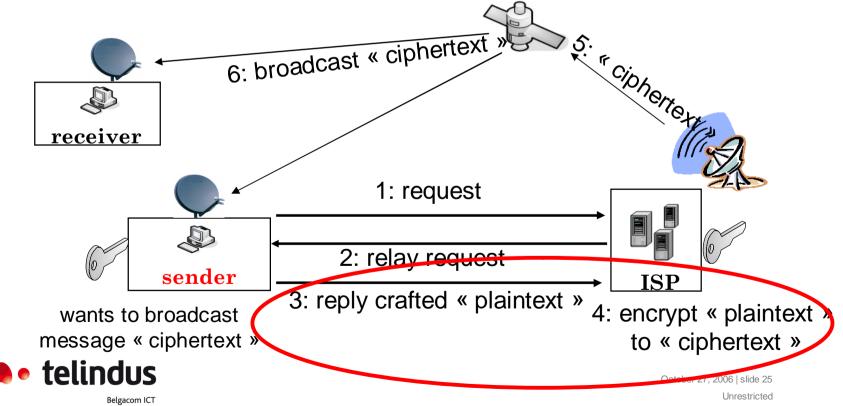
➔ not susceptible

Some Satellite ISPs use DH via dial-up connection

➔ may be susceptible

October 27, 2006 | slide 23 Unrestricted

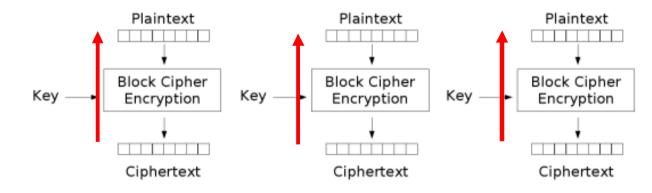
Insider Attacks on Encrypted Transmission Phase (I)


- Idea
 - if insider cannot make the ISP broadcast the message in plaintext...
 - ... the insider may try to make the ISP broadcast « ciphertext » that is exactly the message he wants to broadcast

October 27, 2006 | slide 24 Unrestricted

Insider Attacks on Encrypted Transmission Phase (I)

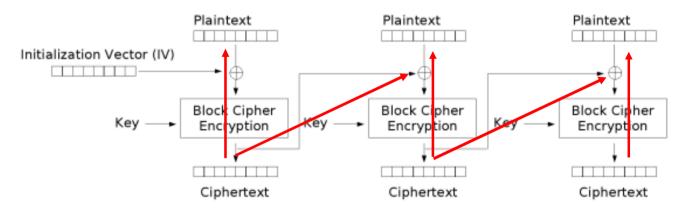
- Insider can make the ISP broadcast « ciphertext » that is exactly the message he wants to broadcast
- Illustration:


Insider Attacks on Encrypted Transmission Phase (II)

- Goal: make the ISP broadcast « ciphertext » that is exactly the message the attacker wants to broadcast to outsiders
- Assumption: insider attacker knows the key k and he knows encryption scheme (E, D) used by ISP
- Setting: attacker requests data *m* from ISP \rightarrow ISP applies encryption c = E(k, m) and broadcasts *c*
- So, if attacker wants the ISP to broadcast a specific ciphertext c', the attacker computes and replies data m' s.t.
 c' = E(k, m')

Insider Attacks on Encrypted Transmission Phase (III)

- So, if attacker wants the ISP to broadcast a specific ciphertext c', the attacker computes and replies data m' s.t.
 c' = E(k, m')
- Some examples: Block Cipher in ECB Mode



Electronic Codebook (ECB) mode encryption

Insider Attacks on Encrypted Transmission Phase (IV)

- So, if attacker wants the ISP to broadcast a specific ciphertext c', the attacker computes and replies data m' s.t. c' = E(k, m')
- Some examples: Block Cipher in CBC Mode (WIMAX/DOCSIS)

Cipher Block Chaining (CBC) mode encryption

Countermeasures

- Key-Exchange Phase
 - use protocol not susceptible to key control attacks
 - frequent key updates requires insider attacker to publish keys at higher rate
 - deter publication of keys by including personal data into keys (credit card number....)
- Encrypted Transmission Phase
 - Randomize the encryption, such that insider attacker cannot craft data that will be encrypted to a specific ciphertext
 - e.g., random prefix to each message block
 - future research.....

Conclusion

- ISPs that operate via broadcast/shared-media should not only offer encryption as an option, but make its use mandatory !
 - leaving users the choice to not use encryption paves the way to
 - broadcast illegal content
 - attack other services of the ISP (e.g., Pay TV)
- Prevention of insider attacks is not trivial
 - many block-cipher modes of operation (OFB,CTR) & stream ciphers are susceptible to the presented insider attack
 - not an «insecurity» of these ciphers, because it was not a design criterion they are rather applied in the wrong setting
 → can not submit it to FSE 2007 ⁽³⁾
 - interesting area of future research

October 27, 2006 | slide 31 Unrestricted

Questions and Answers

Thank you for your attention !

October 27, 2006 | slide 32 Unrestricted