
PHP Security Workshop

Bruno Mairlot

PHP Security Workshop

• Authenticating Variable : Never trust the web
• Using the underlying Web Server as a security

measure
• Safe Mode review and analysis
• PHP Streams : Making the SSL/TLS connection

easy
• PHP SSL Module : Automating Key generation

and Certificate Signing
• Security consideration with Dreamweaver's PHP

code : How your firewall is bypassed without you
knowing it

Never Trust the Web

• HTTP and HTML have been designed as
for public data.

• It is the things you don’t control that are at
the source of attack

• Bots and Agent exists and are easy to use
• You can’t hide form parameter, cookies,…
• Do not trust JavaScript check test, these

data can be easily faked

Never Trust the Web

1. Stick with register_globals = Off
2. Always consider $_REQUEST is

untrustworthy, this is a state of mind
3. Check the type of your variable

(is_numeric(), is_integer(), casting,…)
(1.php)

4. Be careful with conversion function like
settype() (2.php)

Never Trust The Web
What is Trustworthy

• $_SERVER, $_ENV and $_SESSION

Never Trust the Web
Make $_REQUEST trustworthy

• Using one-way hash signature (md5, sha1, sha256 or sha512)
• Create a string concatenating the different variables you want to

trust, add a private key (whatever) and hash it :

• (3.php)
• Then, check your signature with the different variables. These must

be equal.

• This technique ensure that the value of var1 is authentic. (mail,)

<a href=“dest.php?var1=value1&auth=<?php echo sha1($value1.$key)?>”>

If(sha1($_REQUEST[“var1”].$key)==$_REQUEST[“auth”]{
// $_REQUEST[“var1”] has not been tampered

}

Never Trust the Web

• When handling filesystem functions, be
sure to hardcode the root path and to
check variables

• Your friends are :
– $_SERVER[“DOCUMENT_ROOT”]
– __FILE__
– dirname() , basename() , realpath()

Never Trust the Web

• Check your data … and check again.
• Example of tampering with a query :

• What if $_REQUEST[“offset”] is actually “0
; SELECT user,password FROM user”

$query = "SELECT * FROM products LIMIT 20,$_REQUEST[offset]”;
$res = mysql_query($query,$dbh);

Note : This trick doesn’t work with MySQL

Web Server
• ini_set() can override your carefully crafted php.ini file.
• Use the php_admin_flag and php_admin_value Apache

directive to enforce some security feature and/or to make
sure you don’t expose security code.

• (5.php) and (5.php)
• This doesn’t work with SQL_SAFE_MODE
• Be careful, phpinfo() will expose your configuration value

(http://arpenteur7.maehdros.local/phpinfo.php) (you should use
disable_functions ini directive)

<VirtualHost *:80>
DocumentRoot "C:/Program Files/Apache Group/Apache/vhost7"
ServerName arpenteur7.maehdros.local
php_admin_value mysql.default_host localhost
php_admin_value mysql.default_user bruno
php_admin_value mysql.default_password password

</VirtualHost>

Web Server

• Good php_admin_value practice :
– max_execution_time
– safe_mode
– safe_mode_allowed_env_vars (be careful it is a

prefix list => if empty all environment are writeable)
– safe_mode_protected_env_vars
– safe_mode_include_dir
– safe_mode_exec_dir
– open_basedir (is not safe_mode dependant)

Safe Mode

• What is Safe Mode
– Safe Mode alters the behavior of a lot of system-

related function (fopen(), exec(),
move_uploaded_file(),…) and some are completely
disabled (dl(), ``,

– As there are many UID check (and GID) against the
system, it is a good practice to enable suexec on
Apache and dedicate one user for each VirtualHost,
though this might bec complicated to set up.

– Safe Mode is a sort of attempt to chroot but at the
logical level

– Safe Mode is a step toward security but…

PHP Streams

• PHP Streams are fantastic way to abstract
file location and connection.

/* Read local file from /home/bar */
$localfile = file_get_contents("/home/bar/foo.txt");
$localfile = file_get_contents("file:///home/bar/foo.txt");

/* Read remote file from www.example.com using HTTP */
$httpfile = file_get_contents("http://www.example.com/foo.txt");
$httpsfile = file_get_contents("https://www.example.com/foo.txt");

/* Read remote file from ftp.example.com using FTP */
$ftpfile = file_get_contents("ftp://user:pass@ftp.example.com/foo.txt");
$ftpsfile = file_get_contents("ftps://user:pass@ftp.example.com/foo.txt");

PHP Streams

• Creating an SSL connection is as easy as
opening a standard one :

• Different secure streams are :
– https://
– ftps://
– ssl:// - sslv2:// - sslv3:// - tls://
– ssh2.shell:// - ssh2.exec:// - ssh2.tunnel:// -

ssh2.sftp://

$sock = fsockopen("ssl://secure.example.com", 443, $errno, $errstr, 30);
if (!$sock){

die("$errstr ($errno)\n");
}

PHP Streams

• To use Certificate and Private Key, you may use
the function stream_context_set_option() to
specify the following context options :
– verify_peer : Require verification of peer
– cafile (or capath) : Certificate of Authority to use with

verify_peer
– allow_self_signed
– local_cert : You PKCS12 certificated
– passphrase : the passphrase of your private key
– CN_match : Common Name expected

OpenSSL Module

• On Win32 system, make sure the
OPENSSL_CONF environment variable
is set and points to a valid openssl.cnf
(there is one included with PHP)

• When using Certificate, be sure to check
the mandatory fields…

OpenSSL Module

• Creating a Private Key :

• 6.php

$privkey = openssl_pkey_new();
openssl_pkey_export($privkey, $privatekey);
echo $privatekey;

OpenSSL Module

• Create a Certificate Signing Request

• 7.php

$dn = array(
"countryName" => 'LU',
"stateOrProvinceName" => 'Luxembourg',
"localityName" => 'Luxembourg',
"organizationName" => 'Hack.lu',
"organizationalUnitName" => 'Hack.lu',
"commonName" => 'Hack.lu',
"emailAddress" => 'demo@hack.lu'
);

$csr = openssl_csr_new($dn, $privkey,$configarg);
openssl_csr_export($csr,$csrStr,true);

OpenSSL Module
• Signing a Certificate Request

– Have your CA Certificate and Key ready
– Load the CSR data (it is a string)

– (8.php)

$cacert=file_get_contents("brunomairlot.crt");
$cakey = file_get_contents("brunomairlot.key");

// Loading CSR data
$csrdata = file_get_contents("hack.csr");
$certificate = openssl_csr_sign($csrdata, $cacert, $cakey, 365);
// Exporting Certificate
openssl_x509_export($certificate, $certout);

Dreamweaver

• Dreamweaver (since UltraDev) use a
HTTP mechanism to interact with the
database through request to the ‘Testing
Server’

• This mechanism is stored in the
‘_mmServerScripts’ directory that DW
doesn’t show. This directory contains the
script called “MMHTTPDB.php” that is the
main request URL

Dreamweaver

Dreamweaver

• See MMHTTPDB.php
• Remove Connection Scripts

If we have time…

• Other topics : defeating bots
• Authenticating User

