PHP Security Workshop

Bruno Mairlot

PHP Security Workshop

Authenticating Variable : Never trust the web

Using the underlying Web Server as a security
measure

Safe Mode review and analysis

PHP Streams . Making the SSL/TLS connection
easy

PHP SSL Module : Automating Key generation
and Certificate Signing

Security consideration with Dreamweaver's PHP
code : How your firewall is bypassed without you
knowing it

Never Trust the Web

P and HTML have been designed as
public data.

It Is the things you don’t control that are at
the source of attack

Bots and Agent exists and are easy to use
You can’t hide form parameter, cookies,...

Do not trust JavaScript check test, these
data can be easily faked

Never Trust the Web

. Stick with register _globals = Off

. Always consider $ REQUEST is
untrustworthy, this is a state of mind

. Check the type of your variable
(is_numeric(), is_integer(), casting,...)

()

. Be careful with conversion function like

settype() ()

Never Trust The Web
What Is Trustworthy

« $ SERVER,$ ENV and $ SESSION

ack.lu

%?:: Never Trust the Web
“@ Make $ REQUEST trustworthy

Using one-way hash signature (md5, shal, sha256 or sha512)

Create a string concatenating the different variables you want to
trust, add a private key (whatever) and hash it :

<a href="dest.php?varl=valuel&auth=<?php echo shal($valuel.$key)?>">

()
Then, check your signature with the different variables. These must
be equal.

If(shal($_REQUEST["varl”].$key)==$%_ REQUEST["auth™|{
/' $ REQUEST["varl”] has not been tampered

}

This technigue ensure that the value of varl is authentic. (mail,)

Never Trust the Web

* \When handling filesystem functions, be
sure to hardcode the root path and to
check variables

e Your friends are :

—$ SERVER['DOCUMENT ROOT’]
— FILE

— dirname() , basename() , realpath()

Never Trust the Web

 Check your data ... and check again.
 Example of tampering with a query :

$query ="SELECT * FROM products LIMIT 20,$ REQUEST]offset]”;
$res = mysql_query($query,$dbh);

« What if $ REQUEST["offset”] is actually “O
, SELECT user,password FROM user”

Web Server

Ini_set() can override your carefully crafted php.ini file.

Use the php_admin_flag and php_admin_value Apache
directive to enforce some security feature and/or to make
sure you don’t expose security code.

<VirtualHost *:80>
DocumentRoot "C:/Program Files/Apache Group/Apache/vhost7"
ServerName arpenteur7.maehdros.local
php_admin_value mysql.default_host localhost
php_admin_value mysql.default_user bruno
php_admin_value mysql.default_password password
</VirtualHost>

() and ()
This doesn’t work with SQL_SAFE_MODE

Be careful, phpinfo() will expose your configuration value
) (you should use
disable_functions ini directive)

Web Server

e Good php_admin_value practice
— max_execution_time
— safe_mode

—safe_mode_allowed env_vars (be careful it is a
prefix list => if empty all environment are writeable)

— safe_mode_ protected env_vars

— safe_mode_include_dir

— safe_mode _exec_dir

— open_basedir (is not safe_mode dependant)

Safe Mode

e What is Safe Mode

— Safe Mode alters the behavior of a lot of system-
related function (fopen(), exec(),
move_uploaded file(),...) and some are completely
disabled (dl(), ,

— As there are many UID check (and GID) against the
system, it is a good practice to enable suexec on
Apache and dedicate one user for each VirtualHost,
though this might bec complicated to set up.

— Safe Mode is a sort of attempt to chroot but at the
logical level

— Safe Mode is a step toward security but...

PHP Streams

« PHP Streams are fantastic way to abstract
file location and connection.

/* Read local file from /home/bar */
$localfile = file_get_contents("/home/bar/foo.txt");
$localfile = file_get_contents("file:///home/bar/foo.txt");

/* Read remote file from www.example.com using HTTP */
$httpfile = file_get_contents("http://www.example.com/foo.txt");
$httpsfile = file_get_contents("https://www.example.com/foo.txt");

/* Read remote file from ftp.example.com using FTP */
$ftpfile = file_get contents("ftp://user:pass@ftp.example.com/foo.txt");
$ftpsfile = file_get_contents("ftps://user:pass@ftp.example.com/foo.txt");

PHP Streams

e Creating an SSL connection Is as easy as
opening a standard one :

$sock = fsockopen("ssl://secure.example.com”, 443, $errno, $errstr, 30);
if ('$sock){
die("$errstr ($errno)\n");
}
» Different secure streams are :

— https://

— ftps://

— ssli/l - sslv2:/] - ssiv3:/l -ts://

— ssh2.shell:// - ssh2.exec:// - ssh2.tunnel:// -
ssh2.sftp://

PHP Streams

 To use Certificate and Private Key, you may use
the function stream_context_set_option() to
specify the following context options :
— verify _peer : Require verification of peer

— cafile (or capath) : Certificate of Authority to use with
verify peer

— allow_self signed

— local_cert : You PKCS12 certificated

— passphrase : the passphrase of your private key
— CN_match : Common Name expected

OpenSSL Module

On WIn32 system, make sure the
OPENSSL CONF environment variable
IS set and points to a valid openssl.cnf
(there Is one included with PHP)

 When using Certificate, be sure to check
the mandatory fields...

OpenSSL Module

e Creating a Private Key .

$privkey = openssl_pkey new();
openssl_pkey_export($privkey, $privatekey);
echo $privatekey;

OpenSSL Module

* Create a Certificate Signing Request

$dn = array(
"countryName" => 'LU’,
"stateOrProvinceName" => 'Luxembourg’,
"localityName" => 'Luxembourg’,
"organizationName" => 'Hack.Iu',
"organizationalUnitName" => 'Hack.Iu',
"commonName" => 'Hack.Iu',
"emailAddress" => 'demo@hack.Iu’
);

$csr = openssl_csr_new($dn, $privkey,$configarg);

openssl_csr_export($csr,$csrStr,true);

OpenSSL Module

e Signing a Certificate Request

— Have your CA Certificate and Key ready
— Load the CSR data (it Is a string)

$cacert=file_get contents("brunomairlot.crt");
$cakey = file_get_contents("brunomairlot.key");

// Loading CSR data

$csrdata = file_get _contents("hack.csr");

$certificate = openssl_csr_sign($csrdata, $cacert, $cakey, 365);
/I Exporting Certificate

openssl_x509 export($certificate, $certout);

Dreamweaver

 Dreamweaver (since UltraDev) use a
HTTP mechanism to interact with the
database through request to the ‘Testing
Server’

This mechanism is stored Iin the

' mmServerScripts’ directory that DW
doesn’t show. This directory contains the
script called “MMHTTPDB.php” that is the
main request URL

Dreamweaver

Testing Server Database Server

Dreamweaver

PDB.php
« Remove Connection Scripts

If we have time...

e Other topics : defeating bots
* Authenticating User

